首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用磁控三靶(Si,Sb及Te)共溅射法制备了Si掺杂Sb2Te3薄膜,作为对比,制备了Ge2Sb2Te5和Sb2Te3薄膜,并且采用微加工工艺制备了单元尺寸为10μm×10μm的存储器件原型来研究器件性能.研究表明,Si掺杂提高了Sb2Te3薄膜的晶化温度以及薄膜的晶态和非晶态电阻率,使得其非晶态与晶态电阻率之比达到106,提高了器件的电阻开/关比;同Ge2Sb2Te5薄膜相比,16at% Si掺杂Sb2Te3薄膜具有较低的熔点和更高的晶态电阻率,这有利于降低器件的RESET电流.研究还表明,采用16at% Si掺杂Sb2Te3薄膜作为存储介质的存储器器件原型具有记忆开关特性,可以在脉高3V、脉宽500ns的电脉冲下实现SET操作,在脉高4V、脉宽20ns的电脉冲下实现RESET操作,并能实现反复写/擦,而采用Ge2Sb2Te5薄膜的相同结构的器件不能实现RESET操作. 关键词: 相变存储器 硫系化合物 2Te3薄膜')" href="#">Si掺杂Sb2Te3薄膜 SET/RESET转变  相似文献   

2.
The effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 film are studied in detail. Electrical properties and thermal stability can be improved by doping small amount of Si in the Ge2Sb2Te5 film. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phase-transition temperature from face-centered cubic (fcc) phase to hexagonal (hex) phase, however, decreases the melting point slightly. The crystallization activation energy reaches a maximum at 4.1 at.% and then decreases with increasing dopant concentration. The electrical conduction activation energy increases with the dopant concentration, which may be attributed to the increase of strong covalent bonds in the film. The resistivity of Ge2Sb2Te5 film shows a significant increase with Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460 °C annealing increases from 1 to 11 mΩ cm compared to the undoped Ge2Sb2Te5 film. Current-voltage (I-V) characteristics show Si doping may increase the dynamic resistance, which is helpful to writing current reduction of phase-change random access memory.  相似文献   

3.
Ge-doped Sb2Te3 films were prepared by magnetron sputtering of Ge and Sb2Te3 targets on SiO2/Si (1 0 0) substrates. The effect of Ge doping on the structure was studied in details by X-ray diffraction, differential scanning calorimetry, and X-ray photoelectron spectroscopy measurements. It is indicated that Ge atoms substitute for Sb/Te in lattice sites and form Ge-Te bonds, moreover, a metastable phase was observed in Ge-doped specimens. Both crystallization temperature and resistivity of amorphous Sb2Te3 increase after Ge doping, which are beneficial for improving room temperature stability of the amorphous state and reducing the SET current of chalcogenide random access memory.  相似文献   

4.
The amorphous-to-crystalline transition of Ge/Sb2Te3 nanocomposite multilayer films with various thickness ratios of Ge to Sb2Te3 were investigated by utilizing in situ temperature-dependent film resistance measurements. The crystallization temperature and activation energy for the crystallization of the multilayer films increased with the increase in thickness ratio of Ge to Sb2Te3. The difference in sheet resistance between amorphous and crystalline states could reach as high as 104 Ω/□. The crystallization temperature and activation energy for the crystallization of Ge/Sb2Te3 nanocomposite multilayer films was proved to be larger than that of conventional Ge2Sb2Te5 film, which ensures a better data retention for phase-change random access memory (PCRAM) use. A data retention temperature for 10 years of the amorphous state [Ge (2 nm)/Sb2Te3 (3 nm)]40 film was estimated to be 165 °C. Transmission electron microscopy (TEM) images revealed that Ge/Sb2Te3 nanocomposite multilayer films had layered structures with clear interfaces.  相似文献   

5.
Ti/Ge2Sb2Te5/Ti thin films deposited by a sputtering method on SiO2/Si substrates were annealed at 400 °C in N2 atmosphere and characterized by using transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) in order to investigate the inter-diffusion of the Ti/Ge2Sb2Te5/Ti system due to annealing. The TEM and AES results showed that the interface between the Ti and the Ge2Sb2Te5 layers was unstable and Ti atoms were incorporated into the Ge2Sb2Te5 thin film upon annealing. The Te and Sb atoms of the Ge2Sb2Te5 layer diffused into the Ti layer. The intermixing layers between the Ge2Sb2Te5 layer and two Ti layers were formed. These results indicate that the microstructural properties of the Ti/Ge2Sb2Te5/Ti systems can be degraded by the postgrowth thermal annealing.  相似文献   

6.
The reliability characteristics and thermal conductivity of Ga30Sb70/Sb80Te20 nanocomposite multilayer films were investigated by isothermal resistance and transient thermoreflectance (TTR) measurements, respectively. The crystallization temperature and activation energy for the crystallization can be modulated by varying the layer thickness of Ga30Sb70. A data retention time of ten years of the amorphous state [Ga30Sb70 (3 nm)/Sb80Te20 (5 nm)]13, [Ga30Sb70 (5 nm)/Sb80Te20 (5 nm)]10, and [Ga30Sb70 (10 nm)/Sb80Te20 (5 nm)]7 was estimated when ambient temperature is 137, 163, and 178 °C, respectively. Ga30Sb70/Sb80Te20 nanocomposite multilayer films were found to have lower thermal conductivity in both the amorphous and crystalline state compared to Ge2Sb2Te5 film, which will promise lower programming power in the phase-change random access memory.  相似文献   

7.
The effects of nitrogen doping on the chemical bonding state, microstructure, electrical property and thermal stability of Ge15Sb85 film were investigated in detail. The doped N atoms tend to bond with Ge to form Ge3N4, as proved by X-ray photoelectron spectroscopy analyses. X-ray diffraction patterns showed that both undoped and N-doped Ge15Sb85 films crystallize into a hexagonal phase very similar to Sb. The thickness reduction upon crystallization for undoped and N-doped Ge15Sb85 films is less than 5%. The crystalline resistivity, crystallization temperature, and thermal stability of amorphous state all increase after nitrogen doping, while the grain size decreases. By adding 7.0 at.% N into the Ge15Sb85 film, the crystalline resistivity increases twelve times and the crystallization temperature increases about 50 °C. The maximum temperature for 10-year retention of amorphous Ge15Sb85 film is estimated to be 147 °C and that of N-doped films is even higher, which will promise better data retention of phase-change random access memory especially in the high-temperature application.  相似文献   

8.
The atomic arrangement and grain growth of the hexagonal structured Ge2Sb2Te5 were investigated by a transmission electron microscopy study. Unlike the isotropic crystallization of face-centered-cubic (fcc) structured Ge2Sb2Te5, the hexagonal structured Ge2Sb2Te5 grain was preferably grown to a large degree with a specific direction. As a result, we have revealed that the grain growth occurred parallel to the (0 0 0 1) plane, and identified the atomic arrangement of the hexagonal structured Ge2Sb2Te5 having nine cyclic layers by analyzing the high-resolution transmission electron microscopy images and simulated images obtained in the direction of zone axis.  相似文献   

9.
通过反应溅射的方法,制备了N掺杂的Ge2Sb2Te5(N-GST)薄膜,用作相变存储器的存储介质.研究表明,掺杂的N以GeN的形式存在,不仅束缚了Ge2Sb2Te5 (GST)晶粒的长大也提高了GST的晶化温度和相变温度.利用N-GST薄膜的非晶态、晶态面心立方相和晶态六方相的电阻率差异,能够在同一存储单元中存储三个状态,实现相变存储器的多态存储功能. 关键词: 相变存储器 多态存储 N掺杂 2Sb2Te5')" href="#">Ge2Sb2Te5  相似文献   

10.
Crystallization is achieved in amorphous Ge2Sb2Te5 films upon irradiation with a single femtosecond laser pulse. Transmission electron microscopy images evidence the morphology of the crystallized spot which depends on the fluence of the femtosecond laser pulse. Fine crystalline grains are induced at low fluence, and the coarse crystalline grains are obtained at high fluence. At the damage fluence, ablation of the films occurs.  相似文献   

11.
The influence of Si in Sb2Te3 on structure and phase stability was studied by experiments and ab initio calculations. With the increase of Si content in Sb2Te3 samples, the crystallization temperature increases and the crystalline grain size decreases. The incorporation of Si atoms into Sb2Te3 lattice is energetically unfavorable and hence Si atoms most probably accumulated in the boundaries of Sb2Te3 grains.  相似文献   

12.
The electrochemical reduction processes on stainless-steel substrates from an aqueous electrolyte composed of nitric acid, Bi3+, HTeO2+, SbO+ and H2SeO3 systems were investigated using cyclic voltammetry. The thin films with a stoichiometry of Bi2Te3, Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 have been prepared by electrochemical deposition at selected potentials. The structure, composition, and morphology of the films were studied by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM) and electron microprobe analysis (EMPA). The results showed that the films were single phase with the rhombohedral Bi2Te3 structure. The morphology and growth orientation of the films were dependent on the deposition potentials.  相似文献   

13.
Using in situ atomic force microscope (AFM) and Raman spectroscopy, the real-time crystallization properties of Ge2Sb2Te5 films at different temperature were characterized. The given AFM topograph and phase images revealed that the structure of amorphous Ge2Sb2Te5 films began to change at a temperature of as low as 100 °C. When the temperature reached 130 °C, some crystal fragments had formed at the film surface. Heating up to 160 °C, the size of the visible crystal fragments increased, but decreased at a higher temperature of 200 °C. When the Ge2Sb2Te5 film was cooled down to room temperature (RT) from 200 °C, the crystal fragments divided into crystal grains due to the absence of heating energy. The Raman spectra at different temperature further verified the structure evolution of the Ge2Sb2Te5 film with temperature. This work is of significance for the preparation of Ge2Sb2Te5 films and the erasing of data.  相似文献   

14.
汪昌州  朱伟玲  翟继卫  赖天树 《物理学报》2013,62(3):36402-036402
采用磁控二靶(Ga30Sb70和Sb80Te20)交替溅射方法制备了新型Ga30Sb70/Sb80Te20纳米复合多层薄膜, 对多层薄膜周期中Ga30Sb70层厚度对相变特性的影响进行了研究. 结果表明, 多层薄膜的结晶温度可以通过周期中Ga30Sb70层厚度进行调节, 且随着Ga30Sb70层厚度的增加而升高. Ga30Sb70/Sb80Te20纳米复合多层薄膜的光学带隙随Ga30Sb70层厚度的增加而增大. 采用皮秒激光脉冲抽运光探测技术研究了多层薄膜的瞬态结晶动力学过程, 利用不同能量密度的皮秒激光脉冲可以实现Ga30Sb70/Sb80Te20多层薄膜非晶态和晶态的可逆转变.  相似文献   

15.
The nucleation and grain growth of the Ge2Sb2Te5 (GST) thin films were studied using high voltage electron microscope operated at 1250 kV. As a result, we have found that 2 nm-sized nucleus forms as a cluster which atoms are arranged regularly at the stage of nucleation prior to the formation of grains having crystal structure. The high-resolution transmission electron microscopy study and fast-Fourier transformations revealed that coexistence of face-centered-cubic (FCC) and hexagonal structure occurs, and formation of twin defect is found in the hexagonal structure during the grain growth as the annealing temperature is increased. GST grain having the hexagonal structure grow from the surface, and the growth proceeded perpendicular to the [0 0 0 1], namely the path parallel to the (0 0 0 1) plane. Consequently, grain growth to a large-scale result in a lengthened shape.  相似文献   

16.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

17.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

18.
Y2O3 thin films were grown on silicon (1 0 0) substrates by pulsed-laser deposition at different substrate temperatures and O2 pressures. The structure and composition of films are studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Y2O3 thin films deposited in vacuum strongly oriented their [1 1 1] axis of the cubic structure and the film quality depended on the substrate temperature. The magnitude of O2 pressure obviously influences the film structure and quality. Due to the silicon diffusion and interface reaction during the deposition, yttrium silicate and SiO2 were formed. The strong relationship between composition and growth condition was discussed.  相似文献   

19.
Semiconducting Sb2Se3 thin films have been prepared onto the stainless steel and fluorine doped tin oxide coated glass substrates from non-aqueous media using an electrodeposition technique. The electrodeposition potentials for different bath compositions and concentrations of solution have been estimated from the polarization curves. SbCl3 and SeO2 in the volumetric proportion as 1:1 with their equimolar solution concentration of 0.05 M form good quality films. The films are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical absorption techniques. The SEM studies show that the film covers the total substrate surface with uneven surface morphology. The XRD patterns of the films obtained by varying compositions and concentrations show that the as-deposited films are polycrystalline with relatively higher grain size for 1:1 composition and 0.05 M concentration. The optical band gap energy for indirect transition in Sb2Se3 thin films is found to be 1.195 eV.  相似文献   

20.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号