首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nano-TiO2/hydroxyapatite composite bioceramic coating was developed and applied to the surfaces of pure titanium discs by the sol-gel method. A TiO2 anatase bioceramic coating was utilized in the inner layer, which could adhere tightly to the titanium substrate. A porous hydroxyapatite (HA) bioceramic coating was utilized in the outer layer, which has higher solubility and better short-term bioactivity. Conventional HA coatings and commercially pure titanium were used as controls. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize the crystallization, surface morphology, and thickness of the coatings. The bioactivities of the coatings were evaluated by in vitro osteoblast cultures. Results showed that the nano-TiO2/HA composite bioceramic coating exhibited good crystallization and homogeneous, nano-scale surface morphology. In addition, the nano-TiO2/HA coating adhered tightly to the substrate, and the in vitro osteoblast cultures exhibited satisfactory bioactivity.  相似文献   

2.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

3.
Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg2SiO4 and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg2SiO4 was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.  相似文献   

4.
The algorithm for calculation of dynamic compliance of multilayer coatings was developed. The compliance modulus and phase lag of coating surface motion vs. the current pressure depend on viscoelastic properties of materials, ratio of wavelength to layer thickness λ/H, and ratio of wave velocity to propagation velocity of shear vibrations in the base layer V / C t,2 0 Dynamic compliance of the two-layer coating consisting of a thick base layer and thin durable outer layer was calculated. The elasticity modulus of the outer layer ranged up to eight values of elastic modulus of the inner layer; the density of the outer layer either remained equal to the density of the inner layer or increased proportionally to the elastic modulus. Depending on V / C t,2 0 two scenarios of compliant coating interaction with the turbulent flow were distinguished: resonant and broadband ones. It is shown that the vibration properties of two-layer coatings can be significantly better than the properties of the monolayer coatings. This makes it possible either to increase the coating strength or to work efficiently at lower velocities.  相似文献   

5.
The Ni-P/Ni-B duplex coatings were deposited on AZ91D magnesium alloy by electroless plating process and their structure, morphology, microhardness and corrosion resistance were evaluated. The duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with Ni-P as the inner layer. The coatings were amorphous in as-plated condition and crystallized and produced nickel borides upon heat-treatment. SEM observations showed that the duplex interface on the magnesium alloy was uniform and the compatibility between the layers was good. The Ni-P/Ni-B coatings microhardness and corrosion resistance of having Ni-B coating as the outer layer was higher than Ni-P coatings. The Ni-P/Ni-B duplex coatings on AZ91D magnesium alloy with high hardness and good corrosion resistance properties would expand their scope of applications.  相似文献   

6.
A novel Ni based coating - plasma electrolytic oxidation (PEO) pre-treatment followed by electroless nickel (EN) plating - has been developed to produce pore free Ni coatings on AZ91 magnesium alloy. The application of the PEO film between the nickel coating and the substrate acts as an effective barrier and catalytic layer for the subsequent nickel plating. The potentiodynamic tests indicated that the corrosion current density of the PEO + EN plating on AZ91 decreased by almost two orders of magnitudes compared to the traditional EN coating. Salt fog spray testing further proved this improvement. More importantly, the new technique does not use Cr+6 and HF in its pretreatment, therefore is a much environmentally friendlier process.  相似文献   

7.
Phase evolution of an aluminized steel by oxidation treatment   总被引:3,自引:0,他引:3  
Effects of temperature and time on the microstructure and phase evolution for different thermal treatments were investigated with respect to the measurement of intermetallic layer thickness, phase identification and microhardness distribution in the aluminized zone of a steel substrate. The intermetallic phases present in the aluminized region after hot dip aluminizing is mainly Fe2Al5. The thickness of the intermetallic layers increases with increasing oxidation temperature and time. In the oxidation treatments of the aluminized steel in air, the initial Fe2Al5 phase remains at the temperature below 950 °C in 2-h, and the Fe2Al5 phase is completely transformed into low iron content Fe-Al intermetallics due to oxidation at 950 °C for 4 h. However, the Fe2Al5 phase remains in the outer layer of the aluminized samples diffusion-treated in vacuum regardless of diffusion time. The microhardness values of the Al2O3 and the intermetallic Fe2Al5, FeAl2, FeAl and Fe3Al phases are HV1150, HV1010, HV810, HV650 and HV320, respectively. The oxide layer formed on the steel substrate has an extremely fast adherence to the steel substrate and excellent properties of thermal shock resistance, high temperature oxidation resistance and anti-liquid aluminum corrosion.  相似文献   

8.
Hydroxyapatite (HAp) coatings were uniformly formed on pure Mg by a hydrothermal treatment using a C10H12N2O8Na2Ca (Ca-EDTA) solution. The growth mechanism of the HAp coating was investigated with XRD, SEM and TEM. At the initial stage, dome-shape HAp precipitates were formed on the Mg. Subsequently, the precipitates grew and the coating became a dual-layer consisting of an inner dense HAp layer and outer course layer consisting of rod-like HAp crystals. The protectiveness of the coatings with different treatment times was investigated by a polarization test in a 3.5 wt.% NaCl solution. The corrosion current density decreased with the growth of the HAp coating.  相似文献   

9.
Nanocrystalline Mg and MgH2 samples have been prepared by high-energy ball milling and gas phase condensation methods. Starting from these materials in their “as received” state without air exposure, a study of the oxygen and air passivation behaviour was carried out by “in situ” analysis of the samples by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The binding energy and photoemission Auger parameters have been determined for metallic magnesium as well as for magnesium hydride, oxide and hydroxide species. Values of the MgH2 material were reported for the first time. The study clearly shows the formation of an oxide passivation layer of ca. 3-4 nm in thickness for all the nanocrystalline magnesium samples handled under controlled inert gas atmospheres. A hydroxide like amorphous layer is formed at the topmost surface layers of the nanocrystalline Mg and MgH2 samples. The implication of these studies for H2 storage and transport applications of nanocrystalline magnesium is discussed.  相似文献   

10.
A new coating system of under layer for hot dip zinc coating was explored as an effective coating for steel especially for application in relatively high aggressive environments. The influence of different barrier layers formed prior to hot dip galvanization was investigated to optimize high performance protective galvanic coatings. The deposition of ZnO and Ni-P inner layers and characteristics of hotdip zinc coatings were explored in this study. The coating morphology was characterized by scanning electron microscope (SEM) analysis. The hot dip zinc coatings containing under layer showed substantial improvement in their properties such as good adhesion, and high hardness. In addition, a decrease in the thickness of the coating layer and an enhancement of the corrosion resistance were found. Open circuit potential (OCP) of different galvanized layers in different corrosive media viz. 5% NaCl and 0.5 M H2SO4 solutions at 25 ± 1 °C was measured as a function of time. A nobler OCP was exhibited for samples treated with ZnO and Ni than sample of pure Zn; this indicates a dissolution process followed by passivation due to the surface oxide formation. The high negative OCP can be attributed to the better alloying reaction between Zn and Fe and to the sacrificial nature of the top pure zinc layer.  相似文献   

11.
In this paper, the nanostructured zirconia (ZrO2) based thermal barrier coatings (TBCs) deposited by high efficiency supersonic atmospheric plasma spraying (SAPS), were described. The phase composition, microstructure, thermal conductivity and thermal shock resistance of as-sprayed coating were studied. The results revealed that the as-sprayed coating was composed of tetragonal zirconia and consisted of some unmelted nanoparticles (30-50 nm) and nanograins (60-110 nm), and the latter was the main microstructure of the coating. The nanograins and homogeneously distributed micro-cracks of coating resulted in not only low thermal conductivity, but also high thermal cycling lives. Besides, the failure process of coating during thermal cycles was also investigated in the present work.  相似文献   

12.
Plasma-nitriding is used to improve the wear resistance and corrosion resistance of plastic mold steels by modifying the surface layers of these steels. In this study, a precipitation hardenable plastic mold steel (NAK80) was plasma-nitrided at 470, 500, and 530 °C for 4, 8, and 12 h under 25% N2 + 75% H2 atmosphere in an industrial nitriding facility. The microstructures of the base material and nitrided layers as well as the core hardness were examined, and various phases present were determined by X-ray diffraction. The corrosion behaviors were evaluated using anodic polarization tests and salt fog spray tests in 3.5% NaCl solution.The results had shown that plasma-nitriding does not cause the core to soften by overaging. Nitriding and aging could be achieved simultaneously in the same treatment cycle. Plasma-nitriding of NAK80 mold steel produced a nitrided layer composed of an outer compound layer constituting a mixture of ?-nitride and γ′-nitride and an adjacent nitrogen diffusion layer on the steel surface. The amount of ?-nitride and total nitrides increased with an increase in nitriding temperature and nitriding time. Corrosion study revealed that plasma-nitriding significantly improved the corrosion resistance in terms of corrosion potential, corrosion and pitting current density, and corrosion rate. This improvement was found to be directly related to the increase in the amount of ?-nitride at the surface, indicating the amount of ?-nitride controlling the corrosion resistance.  相似文献   

13.
The preparation of core-shell-shell γ-Fe2O3/SiO2/TiO2 nanoparticles of few tens nanometers is performed by successively coating onto magnetic nanoparticles a SiO2 layer and a TiO2 layer, using sol–gel methods. The thickness of the two layers and the aggregation state of the particles can be controlled by the experimental conditions used for the two coatings. These composite nanoparticles may find application as magnetic photocatalysts, since they are characterized by their small diameters which allow a good accessibility to the TiO2 shell. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A bipolar coating, which is composed of inner layer epoxy with nano SiO2 modified by cetyltrimethylammonium bromide (CTAB) (containing positive fixed charge) and outer layer epoxy with nano SiO2 modified by sodium dodecylbenzenesulfonate (SDBS) (containing negative charge), was prepared in this paper. Its deterioration process after exposure to 5% KCl solution was also studied by EIS measurement and SEM observation. The results indicate that the impedance module of the bipolar coating is about 1E+9 ohm after a longer time immersion period. The bipolar coating has a better anti-corrosion capacity than that of epoxy coating. The cation-selective outer layer in bipolar coating inhibits the aggressive anion, such as Cl ion, passing through the outer coating. Similarly, the anion-selective inner layer inhibits the metal cation passing through the inner coating. Thus the bipolar coating can protect the metal substrate from corrosion effectively. The p-n junction of bipolar coating, which has great charge storage ability, is the key factor in the anti-corrosion capacity of bipolar coating.  相似文献   

15.
The results of experiments on the production of zirconia (ZrO2)-based thermal barriert coatings on copper substrates under plasma action in electrolytes on preliminary applied zirconium layers are represented. Structural-morphological investigations by scanning electron microscopy, X-ray analysis, and nuclear backscattering spectrometry showed that micro-arc oxidation (MAO) makes it possible to produce Zr-ZrO2 coatings with a thermal barrier ZrO2 layer with a thickness of more than 100 μm, which is separated from the substrate of the base by a dense MAO barrier layer and a nonoxidized zirconium layer.  相似文献   

16.
The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al2O3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al2O3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al2O3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al2O3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.  相似文献   

17.
Zirconia-coated rutile TiO2 composites were prepared by the chemical liquid deposition method starting from rutile TiO2 and ZrOCl2. The amorphous zirconia coating layers were anchored at the TiO2 surface via Zr-O-Ti bond. The formation of continuous and dense zirconia coating layers was dependent on the pH value of the reaction solution and the mole ratio of ZrOCl2 to TiO2. As compared to the naked rutile TiO2, the water dispersibility, whiteness, brightness, and relative light scattering index of the zirconia-coated rutile TiO2 composites were increased.  相似文献   

18.
The corrosion products on steels exposed at two sites in Campeche, México and one site at Kure Beach, USA, have been investigated to determine the extent to which different marine conditions and exposure times control the oxide formation. The corroded coupons were analyzed by Mössbauer, Raman and infrared spectroscopy as well as X‐ray diffraction, in order to completely identify the oxides and map their location in the corrosion coating. The coating compositions were determined by Mössbauer spectroscopy using a new parameter, the relative recoilless fraction (F-value) which gives the atomic fraction of iron in each oxide phase from the Mössbauer sub‐spectral areas. For short exposure times, less than three months, an amorphous oxyhydroxide was detected after which a predominance of lepidocrocite (γ-FeOOH), and akaganeite (β-FeOOH) were observed in the corrosion coatings with the fraction of the later phase increasing at sites with higher atmospheric chloride concentrations. The analysis also showed that small clusters of magnetite (Fe3O4), and maghemite (γ(Fe2O3), were seen in the micro-Raman spectra but were not always identified by Mössbauer spectroscopy. For longer exposure times, goethite (α-FeOOH), was also identified but little or no β-FeOOH was observed. It was determined by the Raman analysis that the corrosion products generally consisted of inner and outer layers. The protective layer, which acted as a barrier to slow further corrosion, consisted of the α-FeOOH and nano-sized γ-Fe2O3 phases and corresponded to the inner layer close to the steel substrate. The outer layer was formed from high γ-FeOOH and low α-FeOOH concentrations.  相似文献   

19.
Coatings formed on 2024-T3 aluminum alloy were studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) after dipping in zinc phosphating (ZPO) baths at different acidities, for different lengths of time, and with or without Ni2+ additive. The overall objective was to learn more about the role of Ni2+ on the ZPO coating mechanism, particularly since this additive is believed to improve corrosion protection for the Al alloy. Secondary phosphates dominate the coatings when the Ni-containing solution is adjusted to starting pH values of either 3 or 5, while tertiary phosphate is predominant at pH 4. AlF3 precipitates during the early stages of the coating process. Ni2+ has two main roles in the mechanism. First, the rate of increase in local solution pH is retarded by the slower kinetics of reactions involving Ni2+ compared to Zn2+, leading to thinner ZPO coatings when Ni2+ is present in the coating solution. Second, most Ni2+ deposition occurs during the later stages of the coating process, by nickel phosphate deposition and/or by formation of a Ni-rich oxide.  相似文献   

20.
The formation of zinc phosphate (ZPO) coatings on 2024-T3 aluminum alloy was studied using scanning electron microscopy (SEM), scanning Auger microscopy (SAM) and X-ray photoelectron spectroscopy (XPS), with an emphasis on microstructural effects involving second-phase particles and the alloy matrix. Surface polishing results in an Al-Cu-Mg particle surface that contains metallic Cu as well as an overlayer of aluminum and magnesium oxide, while larger amounts of aluminum oxide are present on the Al-Cu-Fe-Mn particle and matrix. When dipped in an acidic ZPO coating solution, the oxide covering the Al-Cu-Mg particle is etched most easily, and metallic Cu near the surface makes that region most cathodic, allowing more coating deposition compared with the other regions. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar, thereby confirming that the observed differences in ZPO coating characteristics at these two regions arise from their underlying electrochemical characteristics. Immersion of a coated 2024-Al sample in corrosive NaCl solution for extended periods indicates that the ZPO provides better protection to the second-phase particles than to the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号