首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了不同时间腐蚀的多孔硅的光致发光性能与多孔硅的表面形貌和少子寿命之间的关系。结果表明,多孔硅的发光来自与氧空位有关的缺陷,而多孔硅表面的氢原子能够钝化多孔硅表面的非辐射中心从而提高多孔硅的发光效率。多孔硅的空隙度随腐蚀时间的延长而增大,这也导致了多孔硅的少子寿命的降低,从而造成多孔硅的光致发光效率随多孔硅空隙度的增大以及少子寿命的降低而提高。另外,原子力显微照片表明长时间的腐蚀使多孔硅表面层被化学腐蚀,从而降低了多孔硅表面的粗糙度。  相似文献   

2.
多孔硅的微结构与发光特性研究   总被引:5,自引:1,他引:4       下载免费PDF全文
利用原子力显微镜(AFM)和光致荧光(PL)光谱对一系列直流腐蚀和脉冲腐蚀的多孔硅的微结构及发光特性进行了对比研究.表面和侧面的AFM结果表明,多孔硅表面呈“小山”状,有许多小的、突出的硅颗粒.在相同的腐蚀条件(等效)下,脉冲腐蚀的样品表面Si颗粒更加尖锐、突出,侧面的线状结构更明显,多孔硅层更厚.对应的PL谱,脉冲腐蚀的样品发光更强.量子限制效应的理论可以比较成功地解释这个结果 关键词:  相似文献   

3.
The photoluminescence and reflectance of porous silicon (PS) with and without hydrocarbon (CHx) deposition fabricated by plasma enhanced chemical vapour deposition (PECVD) technique have been investigated. The PS samples were then, annealed at temperatures between 200 and 800 °C. The influence of thermal annealing on optical properties of the hydrocarbon layer/porous silicon/silicon structure (CHx/PS/Si) was studied by means of photoluminescence (PL) measurements, reflectivity and ellipsometry spectroscopy. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and reflectance measurements were carried out before and after annealing on the carbonized samples for wavelengths between 250 and 1200 nm. A reduction of the reflectance in the ultraviolet region of the spectrum was observed for the hydrocarbon deposited polished silicon samples but an opposite behaviour was found in the case of the CHx/PS ones. From the comparison of the photoluminescence and reflectance spectra, it was found that most of the contribution of the PL in the porous silicon came from its upper interface. The PL and reflectance spectra were found to be opposite to one another. Increasing the annealing temperature reduced the PL intensity and an increase in the ultraviolet reflectance was observed. These observations, consistent with a surface dominated emission process, suggest that the surface state of the PS is the principal determinant of the PL spectrum and the PL efficiency.  相似文献   

4.
Ultrasonically enhanced anodic electrochemical etching is developed to fabricate luminescent porous silicon (PS) material. The samples prepared by the new etching method exhibit superior characteristics to those prepared by conventional direct current etching. By applying ultrasonically enhanced etching, PS microcavities with much higher quality factors can be fabricated. The improved quality induced by ultrasonic etching can be ascribed to increased rates of escape of hydrogen bubbles and other etched chemical species from the porous silicon pillars' surface. This process will cause the reaction between the etchant and the silicon wafer to proceed more rapidly along the vertical direction in the silicon pores than laterally.  相似文献   

5.
We have investigated an oxidation of substrate effect on structural morphology of zinc oxide (ZnO) rods. ZnO rods are grown on porous silicon (PS) and on thermally oxidized porous silicon substrates by carbothermal reduction of ZnO powder through chemical vapour transport and condensation. Porous silicon is fabricated by electrochemical etching of silicon in hydrofluoric acid solution. The effects of substrates on morphology and structure of ZnO nanostructures have been studied. The morphology of substrates is studied by atomic force microscopy in contact mode. The texture coefficient of each sample is calculated from X-ray diffraction data that demonstrate random orientation of ZnO rods on oxidized porous silicon substrate. The morphology of structures is investigated by scanning electron microscopy that confirms the surface roughness tends to increase the growth rate of ZnO rods on oxidized PS compared with porous silicon substrate. A green emission has been observed in ZnO structures grown on oxidized PS substrates by photoluminescence measurements.  相似文献   

6.
In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K2S2O8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K2S2O8 solution has been proposed.  相似文献   

7.
多孔硅光致发光峰半峰全宽的压缩   总被引:3,自引:3,他引:0       下载免费PDF全文
硅发光对于在单一硅片上实现光电集成是至关重要的.目前已有的使硅产生发光的方法有:掺杂深能级杂质、掺稀土离子、多孔硅、纳米硅以及Si/SiO2超晶格.声空化所引发的特殊的物理、化学环境为制备光致发光多孔硅薄膜提供了一条重要的途径.实验表明,声化学处理对于改善多孔硅的微结构,提高发光效率和发光稳定性都是一项非常有效的技术.超声波加强阳极电化学腐蚀制备发光多孔硅薄膜,比目前通用的常规方法制备的样品显示出更优良的性质.这种超声波的化学效应源于声空化,即腐蚀液中气泡的形成、生长和急剧崩溃.在多孔硅的腐蚀过程中,由于超声波的作用增加了孔中氢气泡的逸出比率和塌缩,有利于孔沿垂直方向的腐蚀,使多孔硅光致发光峰的半峰全宽压缩到了3.8nm.  相似文献   

8.
Two bands in the photoluminescence excitation spectra have been studied for the red, blue, and IR emission of oxidized porous silicon (PS) and PS with Er3+- and Yb3+-containing gadolinium oxychloride complex (PS:Er,Yb), introduced by thermal diffusion. These two spectral bands were shown to reflect contributions of two different mechanisms of excitation-emission processes. The UV band for the IR emission of PS:Er,Yb rose sharply at about 290 nm and was explained by the direct photoemission of carriers from the valence band of Si crystallites into the conduction band of the oxide shell. The second band was found to be common for the red and blue emission and assosiated with the carriers photoexcitation inside the Si crystallites. Lifetimes for both bands were measured and the structure of the blue emission from PS:Er,Yb with peaks at 416, 440, 466, and 500 nm from PS:Er,Yb was observed.  相似文献   

9.
It was demonstrated that the etching in HF-based aqueous solution containing AgNO3 and Na2S2O8 as oxidizing agents or by Au-assisted electroless etching in HF/H2O2 solution at 50 °C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters ∼10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

10.
In this work, an ultrasonically enhanced anodic electrochemical etching is developed to fabricate light-emitting porous silicon material. Porous silicon layer is fabricated in n-type (1 0 0) oriented silicon using HF solution and treated in selenious acid to increase the photoluminescence intensity. It is found that the increase of photoluminescence intensity after selenious acid treatment is higher in the intact zones and lower in the detached zones of ultrasonic excitation. The photoluminescence appears as a non-monotonous function of time exposure of selenious acid treatment. Surface chemical composition analysis by X-ray photoelectron spectroscopy shows formation of Si-Sex and Si-Sex-Oy on the surface of porous silicon treated with the selenious acid.  相似文献   

11.
This very paper is focusing on the preparation of porous nanostructures in n-type silicon (1 1 1) wafer by chemical etching technique in alkaline aqueous solutions of 5 M NaOH, 5 M K2CO3 and 5 M K3PO4, and particularly, on its ultraviolet-blue photoluminescence emission. The anodic chemical etched silicon wafer has been characterized by means of optical microscopy, scanning electron microscopy, fluorescence spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. This very surface morphology characterization has been clearly shown - the effect of anodic-chemical-etching procedure processed in K2CO3 or K3PO4 was much vigorous than that processed in NaOH. The FTIR spectra indicate that the silicon oxide was formed on the surface of electrochemical etched n-Si (1 1 1) wafers, yet not on that of the pure chemical etched ones anyhow. And an intense ultraviolet-blue photoluminescence emission is observed, which then differs well from the silicon specimen etched in alkaline solution with no anodic potential applied. The proper photoluminescence mechanism is discussed, and hence there may be a belief that the intense ultraviolet-blue photoluminescence emission would be attributed to the silicon oxide coating formed on silicon wafer in anodic-chemical-etching process.  相似文献   

12.
The effect of chemical treatment of porous silicon samples by HF on its photoluminescence and its evolution with time in sample aging in air is investigated. It is shown that the effect of HF on the luminescence parameters depends on the duration of the treatment and the initial photoluminescence intensity of the sample. It is found that chemical etching in HF accelerates the growth of the total luminescence intensity in aging of the sample in air. The evolution of the photoluminescence spectrum in aging of the sample in air after chemical etching can be explained within the framework of the quantum-size model of the luminescence of porous silicon. Presented at the Fall Meeting of the Material Research Society, December 1–5, 1997, Boston, USA Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 423–427, May–June, 1999.  相似文献   

13.
Nanoporous silicon (NPS) samples were prepared by electrochemical anodic etching of p-type (0 0 1) silicon wafers in HF solution, and some of them were aged in air. The nanostructural, optical and chemical features of the NPS were investigated in terms of etching and aging conditions. The surface of the porous Si exhibits an etched layer with a thickness of 30–40 nm; this layer appears to consist of aggregates of 5–10 nm size nano-crystallites. The NPS exhibited broad photoluminescence (PL) spectra with its peak in the red light region (740 nm). After aging the porous samples for 4 weeks in air, we observed the PL intensity became approximately a fifth of that of the as-prepared one, along with a blue shift. It is very likely that the blue shift of the PL peak was caused by the shrinkage of the Si nano-crystallites due to the oxidation in the surface of the nano-crystallites.  相似文献   

14.
Ultraviolet and blue-green photoluminescence (PL) was investigated on multicrystalline silicon (mc-Si) samples chemically etched by Secco and Yang solutions. The samples were characterized by dislocation density (105-106 cm−2). The form of etched pits is triangular with Yang etch and like a honeycomb with Secco etch as observed with a scanning electron microscope (SEM). These textures of mc-Si wafers give a PL activity similar to that obtained with nanostructures of porous silicon (PS) as reported in the literature. The ultraviolet PL spectra observed with Yang etch shift to the blue-green spectrum range when applying Secco etch. In our experiments we have observed 3-5 μm diameter macro pores separated by a high density of nanowalls. These observations suggest that the origin of the PL activity are quantum dots resulting from the silicon nanocrystallites obtained after few minutes of chemical etching.  相似文献   

15.
Single-mode, highly directional and stable photoluminescence (PL) emission has been achieved from porous silicon microcavities (PSMs) fabricated by pulsed electrochemical etching. The full width at half maximum (FWHM) of the narrow PL peak available from a freshly etched PSM is about 9 nm. The emission concentrates in a cone of 10° around the normal of the sample, with a further reduced FWHM of ∼5.6 nm under angle-resolved measurements. Only the resonant peak is present in such angle-resolved PL spectra. No peak broadening is found upon exposure of the freshly prepared PSM to a He-Cd laser beam, and the peak becomes somewhat narrower (∼5.4 nm) after the PSM has been stored in an ambient environment for two weeks. At optimized etching parameters, even a 4-nm FWHM is achievable for the freshly etched PSM. In addition, scanning electron microscopy (SEM) plane-view images reveal that the single layer porous Si formed by pulsed current etching is more uniform and flatter than that formed by direct current (dc) etching, demonstrated by the well-distributed circular pores with small size in the former in comparison with the irregular interlinking pores in the latter. The SEM cross-section images show the existence of oriented Si columns of 10 nm diameter along the etching direction within the active layer, good reproducibility and flat interfaces. It is thus concluded that pulsed current etching is superior to dc etching in obtaining flat interfaces within the distributed Bragg reflectors because of its minor lateral etching. Received: 7 March 2001 / Accepted: 23 July 2001 / Published online: 30 October 2001  相似文献   

16.
杜松涛  鲁妮 《物理实验》2002,22(8):45-48
采用电化学腐蚀的方法制备多孔硅。对不同实验条件下所得到的多孔硅的拉曼光谱进行了分析,确认多孔硅是具有纳米晶结构特征的材料,肯定了量子限制效应在多孔硅光致发光中的作用。  相似文献   

17.
We have prepared various porous silicon (PS) structures with different surface conditions (any combination of oxidation, carbonization as well as thermal annealing) to increase the intensity of photoluminescence (PL) spectrum in the visible range. Strong white light (similar to day-light) emission was achieved by carrying out thermal annealing at 1100 °C after surface modification with 1-decene of anodic oxidized PS structures. Temperature-dependent PL measurements were first performed by gradually increasing the sample temperature from 10 to 300 K inside a cryostat. Then, we analyzed the measured spectrum of all prepared samples. After the analysis, we note that throughout entire measured spectrum, only two main peaks corresponding to blue and green-orange emission lines (which can be interpreted by quantum size effect and/or configuration coordinate model) were seem to be predominant for all temperature range. To further reveal and analysis these peaks, finally, measured data were inputted into the formula of activation energy of thermal excitation. We found that activation energies of blue and green-orange lines were approximately 49.3 and 44.6 meV, respectively.  相似文献   

18.
In the present paper, several samples of porous silicon monolayers and multilayers were prepared at different anodization conditions with fixed HF concentration. The room temperature photoluminescence wavelength observed to be increased with increased etching time and current density respectively. By Raman measurement it has been observed that as the size of silicon crystallites decreased with increased etching time, the silicon optical phonon line shifted somewhat to lower frequency from 520.5 cm−1 and became broader asymmetrically. The surface roughness and pyramid like hillocks surface was confirmed by AFM measurement. In SEM images, the porous silicon layers were clearly observed by white and black strips. It was also observed that the reflectivity increased as the number of porous silicon layers was increased.  相似文献   

19.
White light luminescence from annealed thin ZnO deposited porous silicon   总被引:1,自引:0,他引:1  
In this study, photoluminescence (PL) properties of annealed ZnO thin films deposited onto a porous silicon (PS) surface by rf-sputtering were investigated. A huge blue shift of luminescence from the ZnO deposited onto the PS surface and a broadband luminescence (white luminescence) across most of the visible spectrum were obtained after the heat treatment at 950 °C in air. The results of Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested that the porous silicon surface was oxidized after ZnO deposition and the broadband luminescence was due to the conversion of Si-H bonds to Si-O-Si bonds on the PS surface. The underlying mechanisms of the broadband PL were discussed by using oxygen-bonding model for the PS and native defects model for ZnO. The experimental results suggested that the heat treatment provides a relatively easy way to achieve white luminescence from thin ZnO deposited porous silicon.  相似文献   

20.
The properties of porous silicon prepared at different illumination and electrochemical conditions were studied. The preparation procedure was based on the electrochemical etching in HF containing electrolyte. In the dissolution of n-type silicon, an external source of light is necessary to obtain a sufficient holes flux density. Here, illumination was applied from the backside of the wafer (the side not immersed in the electrolyte), from topside (the side immersed in the electrolyte), and for the highly doped silicon, etching proceeds without illumination. The electrolyte contains HF in the range 2–50 wt%. The highest current density flows with topside assisted illumination. Backside illumination and etching in the dark resulted in a reduction in the current density. In the dark the current density significantly increased at a higher anodic bias. These conditions gave rise to pores formation with a diameter from 20 nm up to 3 μm. The smallest pore size was obtained for highly doped n-Si (111) wafers, etched without illumination. The present paper confirms the possibility of porous silicon formation in the dark and with backside illumination, these being alternative methods for topside assisted illumination etching methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号