首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We consider a semigroup FP\textfin+ ( \mathfrakS\textfin( \mathbbN ) ) FP_{\text{fin}}^{+} \left( {{\mathfrak{S}_{\text{fin}}}\left( \mathbb{N} \right)} \right) defined as a finitary factor power of a finitary symmetric group of countable order. It is proved that all automorphisms of FP\textfin+ ( \mathfrakS\textfin( \mathbbN ) ) FP_{\text{fin}}^{+} \left( {{\mathfrak{S}_{\text{fin}}}\left( \mathbb{N} \right)} \right) are induced by permutations from \mathfrakS( \mathbbN ) \mathfrak{S}\left( \mathbb{N} \right) .  相似文献   

2.
When \mathbbK{\mathbb{K}} is an arbitrary field, we study the affine automorphisms of Mn(\mathbbK){{\rm M}_n(\mathbb{K})} that stabilize GLn(\mathbbK){{\rm GL}_n(\mathbb{K})}. Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # ${\mathbb{K} > 2}${\mathbb{K} > 2}. We include a short new proof of the more general Flanders theorem for affine subspaces of Mp,q(\mathbbK){{\rm M}_{p,q}(\mathbb{K})} with bounded rank. We also find that the group of affine transformations of M2(\mathbbF2){{\rm M}_2(\mathbb{F}_2)} that stabilize GL2(\mathbbF2){{\rm GL}_2(\mathbb{F}_2)} does not consist solely of linear maps. Using the theory of quadratic forms over \mathbbF2{\mathbb{F}_2}, we construct explicit isomorphisms between it, the symplectic group Sp4(\mathbbF2){{\rm Sp}_4(\mathbb{F}_2)} and the symmetric group \mathfrakS6{\mathfrak{S}_6}.  相似文献   

3.
A code C{{\mathcal C}} is \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-additive if the set of coordinates can be partitioned into two subsets X and Y such that the punctured code of C{{\mathcal C}} by deleting the coordinates outside X (respectively, Y) is a binary linear code (respectively, a quaternary linear code). The corresponding binary codes of \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-additive codes under an extended Gray map are called \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes. In this paper, the invariants for \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes, the rank and dimension of the kernel, are studied. Specifically, given the algebraic parameters of \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes, the possible values of these two invariants, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code with dimension of the kernel k is given. Finally, the bounds on the rank, once the kernel dimension is fixed, are established and the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code for each possible pair (r, k) is given.  相似文献   

4.
We extend to several combinatorial Hopf algebras the endomorphism of symmetric functions sending the first power-sum to zero and leaving the other ones invariant. As a “transformation of alphabets”, this is the (1-\mathbbE)(1-\mathbb{E})-transform, where \mathbbE\mathbb{E} is the “exponential alphabet,” whose elementary symmetric functions are en=\frac1n!e_{n}=\frac{1}{n!}. In the case of noncommutative symmetric functions, we recover Schocker’s idempotents for derangement numbers (Schocker, Discrete Math. 269:239–248, 2003). From these idempotents, we construct subalgebras of the descent algebras analogous to the peak algebras and study their representation theory. The case of WQSym leads to similar subalgebras of the Solomon–Tits algebras. In FQSym, the study of the transformation boils down to a simple solution of the Tsetlin library in the uniform case.  相似文献   

5.
Let G be a finite non-Abelian group. We define a graph Γ G ; called the noncommuting graph of G; with a vertex set GZ(G) such that two vertices x and y are adjacent if and only if xyyx: Abdollahi, Akbari, and Maimani put forward the following conjecture (the AAM conjecture): If S is a finite non-Abelian simple group and G is a group such that Γ S ≅ Γ G ; then SG: It is still unknown if this conjecture holds for all simple finite groups with connected prime graph except \mathbbA10 {\mathbb{A}_{10}} , L 4(8), L 4(4), and U 4(4). In this paper, we prove that if \mathbbA16 {\mathbb{A}_{16}} denotes the alternating group of degree 16; then, for any finite group G; the graph isomorphism G\mathbbA16 @ GG {\Gamma_{{\mathbb{A}_{16}}}} \cong {\Gamma_G} implies that \mathbbA16 @ G {\mathbb{A}_{16}} \cong G .  相似文献   

6.
We prove that the only compact surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} (resp. positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} and positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.  相似文献   

7.
Let \mathbbF\mathbb{F} be a field of characteristic 0, and let G be an additive subgroup of \mathbbF\mathbb{F}. We define a class of infinite-dimensional Lie algebras \mathbbF\mathbb{F}-basis {L μ, V μ, W μ | μ ∈ G}, which are very closely related to W-algebras. In this paper, the second cohomology group of is determined.  相似文献   

8.
A finite group G all of whose nonlinear irreducible characters are rational is called a \mathbbQ1{\mathbb{Q}_1}-group. In this paper, we obtain some results concerning the structure of \mathbbQ1{\mathbb{Q}_1}-groups.  相似文献   

9.
In this paper, we construct a new family of harmonic morphisms ${\varphi:V^5\to\mathbb{S}^2}In this paper, we construct a new family of harmonic morphisms j:V5?\mathbbS2{\varphi:V^5\to\mathbb{S}^2}, where V 5 is a 5-dimensional open manifold contained in an ellipsoidal hypersurface of \mathbbC4 = \mathbbR8{\mathbb{C}^4\,=\,\mathbb{R}^8}. These harmonic morphisms admit a continuous extension to the completion V*5{{V^{\ast}}^5}, which turns out to be an explicit real algebraic variety. We work in the context of a generalization of the Hopf construction and equivariant theory.  相似文献   

10.
We use properties of small resolutions of the ordinary double point in dimension three to construct smooth non-liftable Calabi-Yau threefolds. In particular, we construct a smooth projective Calabi-Yau threefold over \mathbbF3{\mathbb{F}_3} that does not lift to characteristic zero and a smooth projective Calabi-Yau threefold over \mathbbF5{\mathbb{F}_5} having an obstructed deformation. We also construct many examples of smooth Calabi-Yau algebraic spaces over \mathbbFp{\mathbb{F}_p} that do not lift to algebraic spaces in characteristic zero.  相似文献   

11.
The motivation for this paper comes from the Halperin–Carlsson conjecture for (real) moment-angle complexes. We first give an algebraic combinatorics formula for the M?bius transform of an abstract simplicial complex K on [m]={1,…,m} in terms of the Betti numbers of the Stanley–Reisner face ring k(K) of K over a field k. We then employ a way of compressing K to provide the lower bound on the sum of those Betti numbers using our formula. Next we consider a class of generalized moment-angle complexes ZK(\mathbb D, \mathbb S)\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})}, including the moment-angle complex ZK\mathcal{Z}_{K} and the real moment-angle complex \mathbbRZK\mathbb{R}\mathcal {Z}_{K} as special examples. We show that H*(ZK(\mathbb D, \mathbb S);k)H^{*}(\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})};\mathbf{k}) has the same graded k-module structure as Tor  k[v](k(K),k). Finally we show that the Halperin–Carlsson conjecture holds for ZK\mathcal{Z}_{K} (resp. \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}) under the restriction of the natural T m -action on ZK\mathcal{Z}_{K} (resp. (ℤ2) m -action on \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}).  相似文献   

12.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

13.
We determine which singular del Pezzo surfaces are equivariant compactifications of \mathbbG\texta2 \mathbb{G}_{\text{a}}^2 , to assist with proofs of Manin’s conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of \mathbbG\texta {\mathbb{G}_{\text{a}}} ⋊ \mathbbG\textm {\mathbb{G}_{\text{m}}} . Bibliography: 32 titles.  相似文献   

14.
Let S \subseteqq \mathbbZm S \subseteqq \mathbb{Z}_m be a Sidon set of cardinality | S | = m1/2 + O(1) \mid S \mid = m^{1 \over 2} + O(1) . It is proved, in particular, that for any interval á = {a, a + 1, ?, a + l- 1} {\cal I} = \{a, a + 1, \ldots, a + \ell - 1\} in \mathbbZm \mathbb{Z}_m , 0 \leqq l 0 \leqq \ell < m, we have | | S ?á | - | S | l/m | = O( | S | 1/2ln m) \big| {\mid S \cap {\cal I} \mid - \mid S \mid \ell/m} \big| = O(\mid S \mid^{1 \over 2}\textrm{ln}\, m) .  相似文献   

15.
It is shown that Nichols algebras over alternating groups \mathbb Am{\mathbb A_m} (m ≥ 5) are infinite dimensional. This proves that any complex finite dimensional pointed Hopf algebra with group of group-likes isomorphic to \mathbb Am{\mathbb A_m} is isomorphic to the group algebra. In a similar fashion, it is shown that the Nichols algebras over the symmetric groups \mathbb Sm{\mathbb S_m} are all infinite-dimensional, except maybe those related to the transpositions considered in Fomin and Kirillov (Progr Math 172:146–182, 1999), and the class of type (2, 3) in \mathbb S5{\mathbb S_5}. We also show that any simple rack X arising from a symmetric group, with the exception of a small list, collapse, in the sense that the Nichols algebra \mathfrak B(X, q){\mathfrak B(X, \bf q)} is infinite dimensional, q an arbitrary cocycle.  相似文献   

16.
Let \mathbbF\mathbb{F} be a totally real number field, and let f traverse a sequence of non-dihedral holomorphic eigencuspforms on \operatornameGL2/\mathbbF\operatorname{GL}_{2}/\mathbb{F} of weight (k1,?,k[\mathbbF:\mathbbQ])(k_{1},\ldots,k_{[\mathbb{F}:\mathbb{Q}]}), trivial central character and full level. We show that the mass of f equidistributes on the Hilbert modular variety as max(k1,?,k[\mathbbF:\mathbbQ]) ? ¥\max(k_{1},\ldots,k_{[\mathbb{F}:\mathbb{Q}]}) \rightarrow \infty.  相似文献   

17.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

18.
We prove that the moduli space \mathfrakML{\mathfrak{M}_L} of Lüroth quartics in \mathbbP2{\mathbb{P}^2}, i.e. the space of quartics which can be circumscribed around a complete pentagon of lines modulo the action of PGL3 (\mathbbC){\mathrm{PGL}_3 (\mathbb{C})} is rational, as is the related moduli space of Bateman seven-tuples of points in \mathbbP2{\mathbb{P}^2}.  相似文献   

19.
An undirected graph G = (V, E) is called \mathbbZ3{\mathbb{Z}_3}-connected if for all b: V ? \mathbbZ3{b: V \rightarrow \mathbb{Z}_3} with ?v ? Vb(v)=0{\sum_{v \in V}b(v)=0}, an orientation D = (V, A) of G has a \mathbbZ3{\mathbb{Z}_3}-valued nowhere-zero flow f: A? \mathbbZ3-{0}{f: A\rightarrow \mathbb{Z}_3-\{0\}} such that ?e ? d+(v)f(e)-?e ? d-(v)f(e)=b(v){\sum_{e \in \delta^+(v)}f(e)-\sum_{e \in \delta^-(v)}f(e)=b(v)} for all v ? V{v \in V}. We show that all 4-edge-connected HHD-free graphs are \mathbbZ3{\mathbb{Z}_3}-connected. This extends the result due to Lai (Graphs Comb 16:165–176, 2000), which proves the \mathbbZ3{\mathbb{Z}_3}-connectivity for 4-edge-connected chordal graphs.  相似文献   

20.
We show the existence and uniqueness of the (asymptotically) almost periodic solution to parabolic evolution equations with inhomogeneous boundary values on \mathbbR{\mathbb{R}} and \mathbbR±\mathbb{R}_{\pm}, if the data are (asymptotically) almost periodic. We assume that the underlying homogeneous problem satisfies the ‘Acquistapace–Terreni’ conditions and has an exponential dichotomy. If there is an exponential dichotomy only on half intervals ( − ∞, − T] and [T, ∞), then we obtain a Fredholm alternative of the equation on \mathbbR{\mathbb{R}} in the space of functions being asymptotically almost periodic on \mathbbR+{\mathbb{R}}_{+} and \mathbbR-\mathbb{R}_{-}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号