首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of TiAlCN coatings with different carbon contents have been deposited by a reactive sputtering of TiAl target under an environment with a mixture of Ar, N2 and CH4 gases. Microstructural changes, starting from pure TiAlN and then into TiAlCN with the increase of the carbon content, have been clearly demonstrated. This occurrence is due to the carbon atom substitution that results in a small alternation of the interplannar lattice parameter. The coating initially shows a strong preferred (1 1 1) texture in the pure TiAlN but becomes more randomly oriented at the higher carbon contents. Evidence was found for the presence of a free carbon phase, which provides the possibility to accomplish the self-lubricant coating.  相似文献   

2.
通过对聚变堆设计包层进行先后的一维、三维氚增殖比计算与分析,确定合适的模块材料、明确的模块划分以及相应的模块厚度,最终找到了合适的满足氚自持(TBR=1.3162)的熔盐设计包层.  相似文献   

3.
通过对聚变堆设计包层进行先后的一维、三维氚增殖比计算与分析,确定合适的模块材料、明确的模块划分以及相应的模块厚度,最终找到了合适的满足氚自持(TBR=1.3162)的熔盐设计包层。  相似文献   

4.
Topographical structures were created on the surface of multi-walled carbon nanotube-based coatings deposited on borosilicate glass using the direct laser interference patterning (DLIP) technique. Films made by multi-walled carbon nanotubes (MWNTs) dispersed in antimony-doped tin oxide (ATO) matrix and networks of MWNTs with both low and high adherence to the substrates were irradiated with one single laser pulse. Due to the high absorption coefficient of ATO, the film was completely removed at the interference maxima positions leading to periodic arrays of high quality on macroscopic areas. Additionally, increase of the laser fluence has produced wider ablated regions. Irradiation of high adherent networks of MWNTs produced a periodic porous structure, what has been attributed to the presence of adherence promoters in the film. On the other hand, MWNT networks with low adhesion to the substrate were strongly removed at the interference maxima positions. In this case, however, the fabricated periodic structures presented several defects that result from the poor adherence of the film to the substrate.  相似文献   

5.
《Composite Interfaces》2013,20(4):213-222
Thermal and thermochemical treatments with amines have been shown to improve both the mechanical strengths of carbon fibers and their interfacial bonding forces with polymer matrix. In this report, the wettabilities of the surface-treated carbon fibers were studied by dynamic contact angles with epoxy resin. Two mechanisms occur during the fiber modification processes, namely, the fiber core restructuring and surface etching. The former occurs at elevated temperature and increases the fiber strength significantly. When surface reaction occurs, the number of surface oxides increases to improve the surface wettabilities, which may be observed by the decreased dynamic contact angles. Accompanying the etch-cleaning effects, the fiber strength would also increase initially. Deeper penetration of amine would destroy the graphite crystallinity on fiber surfaces and lower the fiber strength.  相似文献   

6.
Composite structure of carbon fibers and SiC nanowires was fabricated by a simple chemical vapor deposition process, using commercial silicon dioxide and graphite powders as raw materials. The analysis of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicates that the synthesized SiC nanowires distribute uniformly with high density in the used carbon fiber preform, which are perpendicular to and around each carbon fiber in a radial array. The SiC nanowires located at the interface of advanced composites is very favorable to the interfacial bonding between composites matrix and carbon fibers, thereby increasing the strength of composites greatly.  相似文献   

7.
This paper deals with the application of Nd-YAG laser emitting at 355 nm to the drilling process of Carbon Fiber Reinforced Polyetheretherkethone (PEEK-CF) laminates. The combination of a modern UV-laser source with a scanning technology enabling speeds up to 4 m/s, suppresses heat affected zones (HAZ) and consequently detachment of fibers from the polymer matrix. A removal technique based on the ablation of superimposed layers of composite material is proposed and analyzed in detail as a function of energy density delivered to the surface, hatch strategy and thickness of the laminate to be drilled. The hatching technique discussed in the paper is compared with conventional laser trepanning and percussion drilling through holes for the realization of 2 mm and 0.1 mm diameter, respectively. In both the cases benefits were noticed in terms of extension of HAZ and quality of the cut edges.  相似文献   

8.
A three-dimensional complex carbon nanoneedle has been fabricated from carbon nanowalls by a direct current plasma chemical vapor deposition system. Sample grown on stainless wire substrate pretreated with the mixing powders of diamond and molybdenum exhibits novel three-dimensional complex nanostructure, the center of which is a carbon nanoneedle, and many carbon nanowalls growing from the needle. The density of unique nanostructure emitters was about 5 × 107/cm2. The I-V characteristic addressed an emission current density of 314 mA/cm2 at the electric field of 2.5 V/μm.  相似文献   

9.
Three kinds of coatings, Ni, Cu and Al2O3, were obtained on the surface of short carbon fibers (SCFs). The interface characteristics and mechanical properties of SCFs/Al composites with the various coatings were systematically studied in this paper. The results showed that, compared to non-coating, Ni or Cu coating improved the wettability of SCFs and Al melt. However, the harmful phases Al3Ni or CuAl2 generated in interface zone and Al matrix result in the lower mechanical properties. Al2O3 coating protected the SCFs and prevented the harmful reaction of Al and SCFs. The interface of Al/Al2O3/SCF without any other phase was clean and well bonded, and the Al2O3-coated SCFs/Al composite had the highest mechanical properties. The interfacial indentation and fracture mechanism of all the composites were analyzed in detail.  相似文献   

10.
A calculation method is presented for the group velocity dispersion of hybrid modes in Bragg fibers. The method is obtained by extending a linear combination approximation of TE and TM modes in an asymptotic expansion method, and its equation can be solved using the Ferrari method. Numerical results were compared by those of a multilayer division method having higher accuracy than the present method. It was confirmed that both linear combination approximation and modified linear combination method can be precisely used above a cladding index difference of ≈1.0 for HE and EH modes.  相似文献   

11.
This paper presents a microstructure optical fiber for dispersion compensation in a wide range of wavelengths. The finite-element method with perfectly matched absorbing layers boundary condition is used to investigate the guiding properties. The designed novel dispersion compensating fiber shows that it is possible to obtain a larger negative dispersion coefficient of about −130 to −360 ps/(nm km), better dispersion slope compensation, better compensation ratio, and lower confinement losses less than 10−2 dB/km in the entire telecommunication (1400–1600 nm) band by using a modest number of design parameters and very simple cladding design.  相似文献   

12.
Effects of rare earth and tantalum on graphite-like carbon coatings   总被引:2,自引:0,他引:2  
The graphite-like carbon (GLC) coating with low friction and good wear resistance is appreciable to make further improvement. Ce, Y and Ta are doped into GLC by using mosaic in the target of magnetron sputtering process. The result shows that yttrium composed in chromium interlayer can increase the bonding strength and refine the microstructure of the GLC coating. For the surface layer of GLC, incorporation of Ta improves wear resistance and deposition rate, in the mean time the friction coefficient is decreased. As the modifications of interlayer and top layer are composed together to form complex GLC coating, the specific wear rate is reduced and the hardness, bonding strength and anti corrosion behavior are improved.  相似文献   

13.
The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.  相似文献   

14.
Suspensions of carbon nanotubes (CNTs) and organic solvent were dropped onto a substrate which had patterned electrodes while applying a DC voltage between the electrodes. Both multiwall and single-wall (SW) CNTs were purified from the mixture of CNTs and the undesirable particles of carbon when the solvent dichloromethane was used at high temperature. It is found that a SW CNT bridges the gap of the electrodes. This enables us to fabricate CNT devices at a controlled position.  相似文献   

15.
We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.  相似文献   

16.
白莹  王蓓  张伟风 《物理学报》2011,60(6):68202-068202
采用熔融盐法,在较低的温度和较短的时间制备了符合理论化学计量比的纳米LiNiO2.研究表明,经过空气中的低温预烧,可以使制备的纯相纳米LiNiO2具有更加优良的结晶性能和更佳的电化学特性.添加预烧步骤前后所得最终产物的初始容量分别为151和148 mAh ·g-1,经过100周的循环,容量衰减到55和118 mAh ·g-1,容量保持率分别为36.4%和79.7%.原因在于预烧后再进行煅烧降低了阳离子无序度,减少了混杂 关键词: 2')" href="#">LiNiO2 熔融盐法 锂离子电池 电化学性能  相似文献   

17.
R. Aich  K. Ismail  K. Tödheide 《高压研究》2013,33(1-6):607-609
Abstract

The electrical conductivities of molten ZnCl2 and its mixtures with KCl were measured as functions of pressure, temperature, and composition. The measuremkents were performed in an internally heated pressure vessel in which the melts were contained in open quartz glass cells. The addition of KCl to molten ZnCl2 causes a large increase of the conductivity at all pressures and temperatures. With increasing pressure the conductivity increases in pure molten ZnCl2 and in mixtures rich in ZnCl2 and decreases in mixtures with more than 30 mol% of KCl.  相似文献   

18.
La-Mn and La-Co doped barium hexaferrites of formula Ba(1−x)LaxFe(12−x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 °C and for 2 h. The temperature was then raised to 950 °C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method.  相似文献   

19.
This paper investigated the behavior of carbon fibers subjected to a ∼20 kA, ∼5 μs high current pulse. It was found that the broken fibers and submicron particles were generated by electrical explosion process. After high current pulsed discharge, the fiber diameter increased significantly, from 5-7 μm to ∼13 μm. Also, the surface rupture of carbon fibers with valleys of hundreds of nanometers was observed. Most notably, the submicron particles appeared with two typical shapes (near-sphere and square). The high current pulsed discharge of carbon fibers can be divided into three stages, namely, heating stage, phase change stage, and explosion stage. Indeed, the electrical explosion process occurred in the last stage of ∼200 ns. The nature behind these results is closely related to the plasma development during the explosion process. The plasma expansion due to a large plasma thermal stress leads to the incomplete explosion. In the explosion stage, the current passing through the fibers exhibited a huge fluctuation, indicating plasma instabilities. Finally, the physical mechanisms, how to affect the surface morphology of carbon fibers, are presented.  相似文献   

20.
Ultrafine fibers were electrospun from Polyacrylonitrile and N,N-dimethylformamide solution to be used as a precursor for carbon nanofibers. An electrospinning set-up was used to collect fibers with diameter ranging from 104 nm to 434 nm. Morphology of fibers and its distribution were investigated by varying Berry's number, charge density, spinning angle, spinneret diameter and collector area. A more systematic understanding of process parameters was obtained and a quantitative relationship between electrospinning parameters and average fiber diameter was established by using response surface methodology. It was concluded that; Berry's number, charge density and spinneret diameters played an important role to the diameter of nanofibers and its standard deviation. Spinning angle and collector area had no significant impact. Based on response surface methodology the optimum Polyacrylonitrile average fiber diameter of 280 nm and 28 nm standard deviation, were collected at 1.6 kV/cm charge density, 8 Berry's number and 0.9 mm spinneret diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号