首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.  相似文献   

2.
Copper thin films are deposited by thermal evaporation on unetched and etched monocrystalline silicon. The study by alpha particles backscattering (RBS) raises a strong diffusion of copper in silicon substrates with and without native suboxide layer. On the other hand, the X-rays diffraction shows the formation and the growth of Cu3Si and Cu4Si silicides. Whereas the scanning microscopy underlines large crystallites growth surrounded by black zones of silicon coming from the uncovered substrate, independently to the surface state of the substrate, after annealing at high temperature. The presence of native silicon suboxide at Cu/Si interface, influences in a drastic way the minimal temperature to which the interfacial reaction occurs. The oxygen impurities detected by microanalysis, after heat treatment under vacuum, are closely related to the growth of silicides crystallites.  相似文献   

3.
We emphasize the importance of the new design concept for diffusion barriers in high-density memory capacitors. RuTiN and RuTiO films are proposed as sacrificial oxygen diffusion barriers. They showed much lower sheet resistance up to 800 °C than various barriers including binary and ternary nitrides, reported by others. The contact resistance for both the Pt/RuTiN/TiSix/n++poly-plug/n+channel layer/Si and the Pt/RuTiO/RuTiN/TiSix/n++poly-plug/n+channel layer/Si contact structures, the most important electrical parameter for the diffusion barrier in the bottom-electrode structure of capacitors, exhibited values as low as 5 kΩ, even after annealing up to 750 °C. When each RuTiN and TiN film is inserted as a glue layer between the bottom electrode Pt layer in the CVD–BST simple stack-type structure, the thermal stability of the RuTiN glue layer is observed to be 150 °C higher than that of the TiN glue layer. Moreover, the capacitance of the PVD–BST simple stack-type structure with a TiN glue layer initially degrades after annealing at 500 °C, and thereafter failed completely. In the case of RuTiN and the RuTiO/RuTiN glue layers, however, the capacitance continuously increased up to 550 °C. These new experimental results accommodate the introduction of the sacrificial design concept of diffusion barriers against oxygen in high-density memory capacitors. Received: 6 February 2002 / Accepted: 4 March 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +82-31/360-4545, E-mail: dongsoo.yoon@hynix.com  相似文献   

4.
The effect of Ag-alloying on the microstructural and thermo-mechanical properties of electrochemically deposited Cu thin films was investigated using the focused ion beam technique, scanning electron microscopy and the electron back scatter diffraction (EBSD) technique as well as the substrate curvature method to study their stress-temperature and stress relaxation behavior. The results show that the linear elastic behavior of 1 μm thick Cu films is significantly improved by alloying. Additionally, after annealing such films have an excellent low electrical resistivity of 1.9-2.0 μΩ cm, which meets the requirements of the roadmap ITRS [International Technology Roadmap for Semiconductors, Edition 2003, part: interconnect, available at http://public.itrs.net/].  相似文献   

5.
In this study, the grain boundary diffusion of Cu through a TiN layer with columnar structure was investigated by X-ray photoelectron spectroscopy (XPS). It was observed that Cu atoms diffuse from the Cu layer to the surface along the grain boundaries in the TiN layer at elevated temperature. In order to estimate the grain boundary diffusion constants, we used the surface accumulation method. The diffusivity of Cu through TiN layer with columnar structure from 400 °C to 650 °C is Db≈6×10−11exp(−0.29/(kBT )) cm2/s. Received: 18 May 1999 / Accepted: 8 September 1999 / Published online: 23 February 2000  相似文献   

6.
We have investigated the reaction of a thin Co film with a (100) Si (Si c ) or an evaporated Si (Si e , which is amorphous) substrate during thermal annealing. On either substrate, Co2Si and CoSi form simultaneously and the growth of each phase has a square root of time dependence. Both silicides grow faster on Si c than on Si e . A model is proposed to calculate the effective diffusion constant in each silicide from the growth data of the silicides. The activation energies of the effective diffusion constants in Co2Si and CoSi grown on Si c are 1.7±0.1 eV and 1.8±0.1 eV, respectively; while those on Si e are 1.85±0.1 eV and 1.9 ±0.1 eV, respectively. The differences observed for the two substrates are tentatively attributed to the presence of impurities in Sie and to the microstructural differences of the silicides formed on either substrate.  相似文献   

7.
2 MeV4He+ backscattering spectrometry and CuK x-ray diffraction were used to study CoSi2 formed by annealing at temperatures between 405° and 500 °C from CoSi with evaporated Si films. A laterally uniform layer of CoSi2 forms, in contrast to the laterally nonuniform CoSi2 layer that is obtained on single crystal Si substrates. The thickness of the CoSi2 film formed is proportional to the square root of time at a fixed temperature. The activation energy of this reaction is about 2.3 eV.  相似文献   

8.
Electromigration (EM) failure in Al interconnects is significantly improved by inserting a WN film between Al and the interlayer dielectric: over 90% of test samples failed with the Al/TiN/Ti interconnects, whereas the failure rate of the Al film on WN is reduced to less than 13% under the stress con‐ ditions of 9 MA/cm2 and 225 °C, and the EM lifetime is also much extended at the same conditions. Experimental results suggest that higher activation energy, no hillocks and compressive stress are responsible for the improved electromigration performance in the Al/WN interconnect. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The polycrystalline ruthenium films are grown on TaN substrates by atomic layer deposition (ALD) using bis(cyclopentadienyl) ruthenium [RuCp2] and oxygen as ruthenium precursor and reactant respectively at a deposition temperature of 330℃. The low-energy Ar ion bombardment and Ru pre-deposition are performed to the underlying TaN substrates before ALD process in order to improve the Ru nucleation. X-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy are carried out to characterize the properties of ALD Ru films. The results show that the nucleation density of Ru films with Ar^+ bombardment to the underlying TaN substrates is much higher than that of the ones without any pretreatment. The possible reasons are discussed.  相似文献   

10.
Reliably acting diffusion barrier films are basically for the functionality of the copper inter-connect technology. Tantalum (Ta) and Tantalum nitride (TaN) are established materials for diffusion barriers against copper diffusion. In this study, the characterization of TaN like films produced using N+ plasma immersion ion implantation (PIII) was performed using Auger electron spectroscopy (AES). Chemical information was extracted from the Auger data using linear least square fit (LLS). The capability of the method in order to detect very little changes in the film composition dependent on small process changes was demonstrated. The nitrogen incorporation by PIII into high aspect ratio contact holes was proven using analytical TEM.  相似文献   

11.
A composition spread metal thin film fabrication technique based on ion beam sputter deposition method was developed. The technique enables us to fabricate any desired part or a complete binary/ternary composition spread metal thin films onto a single substrate by sequentially sputtering different target materials. Composition spread metal thin films can be deposited directly on a dielectric film in patterned electrode shape for C-V and I-V measurements. The system could be especially useful in the search for new multi-component metal gate materials.  相似文献   

12.
The adhesion of Cu on Ru substrates with different crystal orientations was evaluated. The crystal orientation of sputter deposited Ru could be changed from (1 0 0) to (0 0 1) by annealing at 650 °C for 20 min. The adhesion of Cu was evaluated by the degree of Cu agglomeration on Ru. Cu films on annealed Ru films with the (0 0 1) crystal orientation showed 28% lower RMS values and 50% lower Ru surface coverage than Cu as-deposited on Ru having the (1 0 0) crystal orientation after annealing at 550 °C for 30 min, which suggest that Cu wettability on the Ru(0 0 1) was better than that on the Ru(1 0 0) plane. The low lattice misfit of 4% between Cu(1 1 1) and Ru(0 0 1) may be the reason for this good adhesion property.  相似文献   

13.
We have investigated the diffusion of oxygen through evaporated platinum films on Si(100) upon exposure to air using substrates covered with Pt films of spatially and continuously varying thickness (0–500 Å). Film compositions and morphologies before and after silicidation were characterized by modified crater edge profiling using scanning Auger microscopy, energy-dispersive X-ray microanalysis, scanning tunneling microscopy, and transmission electron microscopy. We find that oxygen diffuses through a Pt layer of up to 170 Å forming an oxide at the interface. In this thickness range, silicide formation during annealing is inhibited and is eventually stopped by the development of a continuous oxide layer. Since the platinum film consists of a continuous layer of nanometer-size crystallites, grain boundary diffusion of oxygen is the most probable way for oxygen incorporation. The diffusion constant is of the order of 10–19 cm2/s with the precise value depending on the film morphology.  相似文献   

14.
Techniques of film deposition by co-evaporation, ion-beam assisted mixing, oxygen ion implantation, and thermal annealing were been combined in a novel way to study processing of erbium-in-silicon thin-film materials for optoelectronics applications. Structures with erbium concentrations above atomic solubility in silicon and below that of silicide compounds were prepared by vacuum co-evaporation from two elemental sources to deposit 200-270 nm films on crystalline silicon substrates. Ar+ ions were implanted at 300 keV. Oxygen was incorporated by O+-ion implantation at 130 keV. Samples were annealed at 600 °C in vacuum. Concentration profiles of the constituent elements were obtained by Rutherford backscattering spectrometry. Results show that diffusion induced by ion-beam mixing and activated by thermal annealing depends on the deposited Si-Er profile and reaction with implanted oxygen. Room temperature photoluminescence spectra show Er3+ transitions in a 1480-1550 nm band and integrated intensities that increase with the oxygen-to-erbium ratio.  相似文献   

15.
16.
Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 °C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 μm was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 °C.  相似文献   

17.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.  相似文献   

18.
At room temperature electroplated copper layers exhibit changes in resistivity, residual stress, and microstructure. This process, known as self-annealing, is intimately linked to the release of organic impurities, which stem from the incorporation of organic additives into the Cu layer in the course of the electroplating process. The behavior of these impurities during self-annealing, represented by the carbon content, could be detected by analytical radio frequency glow discharge optical emission spectrometry (GD-OES) and carrier gas hot extraction (CGHE). The precondition of a quantitative determination is a surface cleaning procedure to remove adsorbed organics from the copper surface. It was observed that at first almost all impurities have to leave the Cu metallization before an accelerated abnormal grain growth can start. The small amount of remaining organic species after self-annealing could be quantified by both examination techniques, GD-OES and CGHE.  相似文献   

19.
The formation of (TixW1–x)Si2/(TixW1–x)N, by rapid thermal processing of TixW1–x on Si in an N2 ambient is investigated. An activation energy of 1.7 eV is obtained for silicide formation. A distinct snow-ploughing of As atoms is observed during silicide formation whereas the interfacial B concentration decreases with increasing silicide formation temperature. The diffusion barrier properties of the (TixW1–x)Si2/(TixWi1–x)N stack in contact with Al is investigated upon post-metal annealing. No interaction between the layers is found for temperatures as high as 475°C after 60 min. The improved thermal stability of the (TixW1–x)N layer in contact with Al is attributed to nitrogen blocking of the grain boundaries.  相似文献   

20.
Poly(zinc 1,6-hexanedithiolate) thin film, a precursor to prepare ZnS thin film, was self-assembled on a quartz substrate. The UV-vis spectra monitored the annealing process of the poly(zinc 1,6-hexanedithiolate) film, which revealed that the ZnS thin film began to form at approximately 515 K. The result of XRD confirmed the crystallinity of ZnS. With increase of annealing temperature, a red shift of the emission spectra was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号