首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al-N co-doped ZnO (ZnO:Al-N) thin films were grown on n-Si (1 0 0) substrate by RF co-sputtering technique. As-grown ZnO:Al-N film exhibited n-type conductivity whereas on annealing in Ar ambient the conduction of ZnO:Al-N film changes to p-type, typically at 600 °C the high hole concentration of ZnO:Al-N co-doped film was found to be 2.86 × 1019 cm−3 and a low resistivity of 1.85 × 10−2 Ω-cm. The current-voltage characteristics of the obtained p-ZnO:Al-N/n-Si heterojunction showed good diode like rectifying behavior. Room temperature photoluminescence spectra of annealed co-doped films revealed a dominant peak at 3.24 eV.  相似文献   

2.
ZnO:N thin films were deposited on sapphire substrate by metal organic chemical vapor deposition with NH3 as N-doping sources. The reproducible p-type ZnO:N film with hole concentration of ∼1017 cm−3 was successfully achieved by subsequent in situ thermal annealing in N2O plasma protective ambient, while only weak p-type ZnO:N film with remarkably lower hole concentration of ∼1015 cm−3 was obtained by annealing in O2 ambient. To understand the mechanism of the p-type doping behavior of ZnO:N film, X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption near-edge spectroscopy (XANES) measurements have been applied to investigate the local electronic structure and chemical states of nitrogen atoms in ZnO:N films.  相似文献   

3.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

4.
In order to obtain p-type ZnO thin films, effect of atomic ratio of Zn:N:Al on the electronic and structural characteristic of ZnO thin films was investigated. Hall measurement indicated that with the increase of Al doping, conductive type of as-grown ZnO thin films changed from n-type to p-type and then to n-type again, reasons are discussed in details. Results of X-ray diffraction revealed that co-doped ZnO thin films have similar crystallization characteristic (0 0 2 preferential orientation) like that of un-doping. However, SEM measurement indicated that co-doped ZnO thin films have different surface morphology compared with un-doped ZnO thin films. p-type ZnO thin films with high hole concentration were obtained on glass (4.6 × 1018 cm−3) and n-type silicon (7.51 × 1019 cm−3), respectively.  相似文献   

5.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

6.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

7.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

8.
Arsenic doped p-type ZnO thin films were grown on sapphire substrate by magnetron sputtering. As grown films reveal p-type conduction confirmed by Hall-effect and photoluminescence measurements. The p-type film with a hole concentration of 2.16× 1017 cm−3, mobility of 1.30 cm2/V.s and resistivity of 22.29 Ω-m were obtained at substrate temperature of 700 °C. ZnO homojunction synthesized by in-situ deposition of As doped p-ZnO layer on Al doped n-ZnO layer showed p-n diode like characteristics. X-ray pole figure and Transmission Electron Microscope studies confirm epitaxial nature of the films. Photoluminescence results exhibit the peaks associated with donor acceptor pair emission.  相似文献   

9.
Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition   总被引:1,自引:0,他引:1  
p-Type ZnO thin films have been realized via monodoping antimony (Sb) acceptor by using pulsed laser deposition. The obtained films with the best electrical properties show a hole concentration in the order of 1018 cm−3 and resistivity in the range of 2-4 Ω cm. X-ray diffraction measurements revealed that all the films possessed a good crystallinity with (0 0 2)-preferred orientation. Guided by X-ray photoemission spectroscopy analysis and a model for large-sized-mismatched group-V dopant in ZnO, an SbZn-2VZn complex is believed to be the most possible acceptor in the Sb-doped p-type ZnO thin films.  相似文献   

10.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

11.
Al and N codoped ZnO thin films were grown on n-Si (100) substrate by sputtering technique. Hall effect measurements of as-grown films exhibited n-type conduction, however 500 °C Ar annealed codoped films showed p-type conductivity with a hole concentration of 9.9 × 1016 cm− 3, resistivity of 15.95 Ω-cm and hole mobility of 3.95 cm2/Vs, respectively. Codoped ZnO thin films were found to be highly c-axis oriented with good crystal quality. A neutral acceptor-bound exciton and donor-acceptor-pair emissions that appeared at room temperature photoluminescence measurement verify p-type conduction in Al and N codoped ZnO film. The current-voltage characteristics of p-n heterojunction evidently showed a diode like rectifying behaviour.  相似文献   

12.
To resolve the problem of p-type doping in ZnO, nitrogen and aluminum (N-Al) codoped ZnO films were prepared by the ultrasonic spray pyrolysis (USP) technique. The structural and electrical properties of N-Al codoped ZnO films were investigated. The results demonstrate that the undoped ZnO films exhibit the preferential orientation of (002) plane, while ZnO films show high orientation of (101) plane after codoping with N and Al. The N-Al codoped ZnO films under optimum conditions show p-type conduction, with a low resistivity of 1.7×10−2Ω cm, carrier concentration of 5.09×1018 cm−3 and high Hall mobility of 73.6 cm2 V−1 s−1. A conversion from p-type conduction to n-type was observed during the increase of measurement temperature.  相似文献   

13.
Polycrystalline ZnO thin films codoped with Na and N were obtained by chemical bath deposition. The structural characteristic and the optical properties of the rapid thermal annealed ZnO:(Na,N) films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer (EDS), Raman spectrum and room-temperature photoluminescence. After RTA treatment, the XRD spectra showed a continuous decrease of the full- width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the ZnO:(Na,N) film. The Raman spectra revealed that the intensity of the mode around 582 cm−1 increased with the increase of the RTA temperature. The PL spectra showed different trends in the UV luminescence of ZnO:(Na,N) films after RTA treatments.  相似文献   

14.
Fluorine and hydrogen co-doped ZnO:Al (AZO) films were prepared by radio frequency (rf) magnetron sputtering of ZnO targets containing 1 wt.% Al2O3 on Corning glass at substrate temperature of 150 °C with Ar/CF4/H2 gas mixtures, and the structural, electrical and optical properties of the as-deposited and the vacuum-annealed films were investigated. In as-deposited state, films with fairly low resistivity of 3.9-4 × 10−4 Ω cm and very low absorption coefficient below 900 cm−1 when averaged in 400-800 nm could be fabricated. After vacuum-heating at 300 °C, the minimum resistivity of 2.9 × 10−4 Ω cm combined with low absorption loss in visible region, which enabled the figure of merit to uplift as high as 4 Ω−1, could be obtained for vacuum-annealed film. It was shown that, unlike hydrogenated ZnO films which resulted in degradation upon heating in vacuum at moderately high temperature, films with fluorine addition could yield improved electrical properties mostly due to enhanced Hall mobility while preserving carrier concentration level. Furthermore, stability in oxidizing environment could be improved by fluorine addition, which was ascribed to the filling effect of dangling bonds at the grain boundaries. These results showed that co-doping of hydrogen and fluorine into AZO films with low Al concentration could be remarkably compatible with thin film solar cell applications.  相似文献   

15.
Tin-doped indium oxide (ITO) films with 200 nm thickness were deposited on glass substrates by DC magnetron sputtering at room temperature. And they were annealed by rapid thermal annealing (RTA) method in vacuum ambient at different temperature for 60 s. The effect of annealing temperature on the structural, electrical and optical properties of ITO films was investigated. As the RTA temperature increases, the resistivity of ITO films decreases dramatically, and the transmittance in the visible region increases obviously. The ITO film annealed at 600 °C by RTA in vacuum shows a resistivity of 1.6 × 10−4 Ω cm and a transmittance of 92%.  相似文献   

16.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

17.
Al-N co-doped ZnO films were fabricated by gaseous ammonia annealing at various temperatures. The structure and the electrical properties of Al-N-doped ZnO films strongly depend on the annealing temperature. XRD and SEM analysis indicate that the ZnO films possess a good crystallinity with c-axis orientation, uniform thickness and dense surface. Optical transmission spectra show a high transmittance (∼85%) in the visible region. Hall measurement demonstrates that ZnO films have p-type conduction with high carrier concentration of 8.3 × 1018 cm−3 and low resistivity of 25.0 Ω cm when the annealing temperature is 700 °C. Also the growth process of Al-N co-doped at various temperatures is discussed in detail.  相似文献   

18.
Ag-N doped ZnO film was synthesized by ion beam assisted deposition and its electrical properties and annealing property were investigated. The films remained p-type even after annealing at 400 °C in air for 10 min. While the annealing temperature went up to 500 °C, the conduction type of these films shifted from p-type to n-type. The p-type ZnO film revealed low resistivity (0.0016 Ω cm), low Hall mobility (0.65 cm2 V−1 s−1) and high carrier concentration (5.8 × 1020 cm−3). ZnO p-n homojunction consisting of a p-type layer (Ag-N doped ZnO film) and an n-type layer (In-doped ZnO film) had been fabricated by ion beam assisted deposition. With electrical measurement, its current-voltage curve had a typical rectifying characteristic with current rectification ratio of 25 at bias ±5 V and a reverse current of 0.01 mA at −5 V. The depletion width was estimated 3.8 nm by using p-n junction equation.  相似文献   

19.
Mn–N co-doped ZnO films with wurtzite structure were fabricated by RF magnetron sputtering together with the ion-implantation technique. Then a post-annealing at 650 °C for 10 min in a N2 atmosphere was performed to activate the implanted N+ ions and recover the crystal quality, and a p-type ZnO:Mn–N film with a hole concentration of about 2.1×1016 cm?3 was obtained. It is found that the Mn mono-doped ZnO film only exhibits paramagnetic behavior, while after N+-implantation, it shows ferromagnetism at 300 K, and the magnetization of the ZnO:Mn–N films can be further enhanced by thermal annealing due to the activation of the N acceptors. Our experimental results confirm that the codoping N acceptors are favorable for ferromagnetic ordering of Mn2+ ions in ZnO, which is consistent with the recent theoretical calculations.  相似文献   

20.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号