首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
First-principles pseudo-potential calculations within density-functional theory framework are performed in order to study the structural and electronic properties of nickel adsorption and diffusion on a GaN(0 0 0 1)-2×2 surface. The adsorption energies and potential energy surfaces are investigated for a Ni adatom on the Ga-terminated (0 0 0 1) surface of GaN. This surface is also used to study the effect of the nickel surface coverage. The results show that the most stable positions of a Ni adatom on GaN(0 0 0 1) are at the H3 sites and T4 sites, for low and high Ni coverage respectively. In addition, confirming previous experimental results, we have found that the growth of Ni monolayers on the GaN(0 0 0 1) surface is possible.  相似文献   

2.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

3.
In this work, we have investigated by means of first-principles spin-polarized calculations, the electronic and magnetic properties of iron (Fe) adsorption and diffusion on the GaN(0 0 0 1) surface using density functional theory (DFT) within a plane-wave pseudopotential scheme. In the surface adsorption study, results show that the most stable positions of a Fe adatom on GaN(0 0 0 1) surface are the H3 sites and T4 sites, for low and high Fe coverage respectively. We found that the Fe-H3 2 × 2 surface reconstruction exhibits a half-metallic behavior with a spin band gap and stable ferromagnetism ordering, which is a desirable property for high-efficiency magnetoelectronic devices. In addition, confirming previous experimental results, we found that the iron monolayers present a ferromagnetic order and a large thermal stability. This is interesting from a theoretical point of view and for its technological applications.  相似文献   

4.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   

5.
Adsorption of methanol on clean Pd(1 1 0) and on an alloyed Ag/Pd(1 1 0) surface has been studied by high-resolution photoelectron spectroscopy. On Pd(1 1 0) two different chemisorbed methanol species were observed for temperatures up to 200 K, with the one at lower binding energy remaining at low coverage. These species were attributed to methanol adsorbed in two different adsorption sites on the Pd(1 1 0) surface. As is well established for this system, heating to 250 K resulted in decomposition of methanol into CO. The adsorption and decomposition behaviour of methanol on the Ag/Pd(1 1 0) surface alloy formed by depositing Ag on Pd(1 1 0) at elevated temperature was similar to that of the pure Pd(1 1 0) surface. This suggests that the amount of Ag present in the Pd(1 1 0) surface in this study does not affect the decomposition behaviour of methanol as compared to pure Pd(1 1 0). Complementary density functional theory calculations also show little influence of Ag on the binding of methanol to Pd. These calculations predict an on-top adsorption site for low methanol coverages.  相似文献   

6.
We investigated the adsorption of a 6-dimers Si(1 0 0)2 × 1 surface as a function of coverage and adsorption type (molecular/dissociative) by first principle calculations. In particular, we performed calculations on models with 2, 3, 4 and 6 phenol molecules, corresponding to coverage Θ = 0.34, 0.5, 0.67 and 1. We found that total adsorption energy, when at least one phenol is in a molecular state is lower than the sum of the corresponding singly adsorbed molecules. The dissociative adsorption of multiple molecules, both in parallel and switched configuration is most favoured for a coverage Θ = 0.34 (2.6 eV per adsorbed molecule). This values decreases to 2.0 eV and remains constant till the coverage 1 is reached.The energy barrier for the molecular-to-dissociated transition of a phenol molecule, in presence of another dissociatively adsorbed molecule is ∼0.008 eV and it is similar to the value in case of single adsorption. Possible hydrogen displacements were also considered.  相似文献   

7.
Density functional theory calculations have been applied to investigate the adsorption geometry of water overlayers on the NaCl(1 0 0) surface in the monolayer regime. Competition between H-H intermolecular repulsion and the attraction of the polar molecules to the surface ions results in the most stable structure having a 2 × 1 adsorption symmetry with an adsorption energy of 415 meV. Overlayers of 1 × 1 symmetry, as observed in experiment, have slightly lower adsorption energies. The layers are also unstable with respect to rotation of individual molecules. Multiple hydrogens/oxygens interacting with a single substrate ion can pull that ion out of the surface, although the examples considered are energetically very unfavourable. Overlayers of 1 × 1 symmetry with a coverage of one water molecule per NaCl do not have a high enough adsorption energy to wet the surface.  相似文献   

8.
Coverage-dependent adsorption energy of the Ge/Ru(0 0 0 1) growth system and the geometrical distortions of the most stable adsorption structure are investigated through first-principles calculations within density functional theory. A local minimum in adsorption energy is found to be at a Ge coverage of 1/7 monolayer with a Ru(0 0 0 1)- symmetry. Based on this stale superstructure, the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) images are simulated by means of surface local-density of states (LDOS). The results are consistent well with the STM measurements on the phase for Ge overlayer on Ru(0 0 0 1). From this stimulation, the relations between the STM images and the lattice distortion are also clarified.  相似文献   

9.
To understand CdTe doping with In, first-principle calculations are performed to obtain the various kinds of surface-structure for In on CdTe (0 0 1) surface. Of all the structures examined, the structure of CdTe (0 0 1) as caused by In adsorption atoms at the fourfold hollow sites with 0.25 monolayer coverage is the most energetically favorable. In atoms are adsorbed on the Cd-terminated surface, whereas below the Te-terminated surface. For the Cd-terminated surface, cadmium vacancy can form spontaneously and is energetically favorable. In atoms are likely to be adsorbed/incorporated at an interstitial site on Te-terminated CdTe (0 0 1) surfaces for most of the range of the chemical potential.  相似文献   

10.
The first-principles calculations have been presented to study the adsorption of aluminum (Al) on the Si(0 0 1)(2×1) surface. We have investigated the optimized geometries and electronic structures of the adatom-substrate system. The adsorption energy of the system has been calculated. The most stable adsorption sites were consequently determined to be HH site and T3+T4. It is shown that the Si-Si dimer is asymmetric on the reconstructed bare surface and become symmetric upon Al adsorption. In addition, the bond length of Si-Si was found to be considerably elongated in the adsorption system. It is found that the work function change obtained in our work is different from other previous results on the adsorption of alkali metals on the Si(0 0 1) surface. In order to investigate the relative stability of phases at different coverages, the surface formation energy of the adsorption system was calculated. To shed light on the nature of the Al-Si bond and the character of silicon surface, the density of states (DOS) and difference charge density of the system were evaluated.  相似文献   

11.
In order to understand the first steps of the Cu(1 0 0) oxidation we performed first principles calculations for on-surface and sub-surface oxygen on this surface. According to our calculations, the adsorption energies for all on-surface site oxygen atoms increase, whereas the energies of the sub-surface atoms decrease with the increasing oxygen coverage. At coverage 1 ML and higher on the reconstructed surface, structures including both on- and sub-surface atoms are energetically more favourable than structures consisting only of on-surface adsorbates. On the ideal (1 0 0) surface this change can be perceived at coverage 0.75 ML.  相似文献   

12.
First-principles calculations are performed to study the various structures of oxygen (O) adsorbed on InN(0 0 0 1) surfaces. It is found that the formation energy of O on InN(0 0 0 1) decreases with decreasing oxygen coverage. Of all the adsorbate induced surface structures examined, the structure of InN(0 0 0 1)-(2 × 2) as caused by O adsorption at the H3 sites with 0.25 monolayers coverage is most energetically favorable. Meanwhile, nitrogen (N) vacancy can form spontaneously. Oxygen atoms may also substitute N atoms, or accumulate at the voids inside InN film or simply stay on the surface during growth. The oxygen impurity then acts as a potential source for the n-type conductivity of InN as well as the large energy band gap measured.  相似文献   

13.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

14.
Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.  相似文献   

15.
Noboru Takeuchi 《Surface science》2007,601(16):3361-3365
The adsorption of acetylene on the Si(0 0 1)-c(2 × 4) surface at low and full coverage is studied by first principles density functional calculations using the generalized gradient approximation. For a single acetylene molecule, the most stable configuration corresponds to the di-σ site, on-top of a silicon dimer. This configuration is 0.36 eV more stable than the end-bridge site between two adjacent Si dimers. However, if there are two acetylene molecules, the paired end bridge configuration becomes the most stable. We have also studied the kinetics of the adsorption of a single acetylene molecule. Our calculations show that the reaction is barrier-free for adsorption in the di-σ configuration, while there is an energy barrier of 0.19 eV for adsorption in the end-bridge site. At monolayer coverage, the most stable configuration corresponds to acetylene molecules in the pair-end bridge configuration, in agreement with previous calculations. We have found a noticeable coverage dependence only for the end-bridge site, but not for the di-σ. Our results show that to have an accurate picture of the adsorption of acetylene on the Si(0 0 1) surface, a large unit cell is needed.  相似文献   

16.
The angular distribution of desorbing N2 was studied in the decomposition of N2O(a) on Rh(1 0 0) at 60-140 K by means of angle-resolved temperature-programmed desorption. N2 desorption shows two peaks at around 80 K and 110 K. At low N2O coverage, the former collimates far from the surface normal toward the [0 0 1] direction, whereas at high coverage, the desorption sharply collimates along the surface normal. The adsorption form of N2O and its dissociation were also examined by DFT-GGA calculations. Dissociating N2O is proposed to be lying along the [0 0 1] direction at low coverage and to change to an upright form bonding through the terminal oxygen at high coverage.  相似文献   

17.
The adsorption of submonolayer V on an idealized model hematite (0 0 0 1) surface and subsequent oxidation under atomic O adsorption are studied by density functional theory. The preferred adsorption sites, adsorption energy and configuration changes due to V and O adsorption are investigated. It is found that in most cases V forms threefold bonds with surface O atoms, inducing a large geometry change at the hematite surface and near surface region and a bond stretch between surface Fe and O. The adsorption energy is mainly decided by interplay between adsorbed metal-surface oxygen bonding and adsorbed metal - subsurface metal interaction. The relative energy of subsequent O adsorption and geometry depends on the reformed V/hematite structure. Electronic properties such as projected densities of states and chemical state change upon V adsorption are studied through both periodic slab and embedded cluster localized orbital calculations; both strong vanadium-oxygen and vanadium-iron interactions are found. While V generally donates electrons to a hematite surface, causing nearby Fe to be partially reduced, the Fe and V oxidization state depends very much on the coverage and detailed adsorption configuration. When the V/hematite system is exposed to atomic O, V is further oxidized and surface/near surface Fe is re-oxidized. Our theoretical results are compared with X-ray surface standing wave and X-ray photoelectron spectroscopic measurements. The influence of d-electron correlation on the predicted structures is briefly discussed, making use of the DFT + U scheme.  相似文献   

18.
The effect of S contamination on the properties of Fe(1 0 0) is examined using density functional theory (DFT) calculations. S is adsorbed at 1/2 monolayer coverage in atop, bridge and hollow sites in a c(2 × 2) arrangement. The effect of S on the clean surface properties is first examined for the three adsorption sites and compared with experimental and other theoretical data. S is found to adsorb preferentially in hollow sites on the isolated surface in agreement with experiment. The adhesion energy at different interfacial separations is then calculated and the effect of S on the interfacial properties of Fe(1 0 0) is characterised quantitatively and qualitatively. S is found to enhance adhesion at larger separations though at the equilibrium interfacial separation the maximum interfacial strength is reduced.  相似文献   

19.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

20.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号