共查询到20条相似文献,搜索用时 15 毫秒
1.
Band bending and band alignment at HfO2/SiO2/Si and HfO2/Hf/SiO2/Si interfaces were investigated using X-ray photoelectron spectroscopy. After Hf-metal pre-deposition, a 0.55 eV band bending in Si and a 1.80 eV binding energy decrease for Hf 4f and O 1s of HfO2 were observed. This was attributed to the introduction of negative space charges at interface by Hf pre-deposition. Band bending decrease and synchronous binding energy increases of O 1s and Hf 4f for HfO2 were observed during initial Ar+ sputtering of the Hf pre-deposited sample. This was interpreted through the neutralization of negative space charges by sputtering-induced oxygen vacancies. 相似文献
2.
Hafnium oxynitride (HfOxNy) gate dielectric has been deposited on Si (1 0 0) by means of radio frequency (rf) reactive sputtering using directly a HfO2 target in N2/Ar ambient. The thermal stability and microstructural characteristics for the HfOxNy films have been investigated. XPS results confirmed that nitrogen was successfully incorporated into the HfO2 films. XRD analyses showed that the HfOxNy films remain amorphous after 800 °C annealing in N2 ambient. Meanwhile the HfOxNy films can also effectively suppress oxygen diffusion during high temperature annealing and prevent interface layer from forming between HfOxNy films and Si substrates. AFM measurements demonstrated that surface roughness of the HfOxNy films increase slightly as compared to those pure HfO2 films after post deposition annealing. By virtue of building reasonable model structure, the optical properties of the HfOxNy films have been discussed in detail. 相似文献
3.
Sonalee ChopraSeema Sharma T.C. Goel R.G. Mendiratta 《Solid State Communications》2003,127(4):299-304
Thin films of Pb1−xCaxTiO3 [x=0.20, 0.24 and 0.28] have been prepared on ITO coated Corning glass substrates by sol gel technique. The perovskite phase of PCT films is formed at 650 °C with a polycrystalline tetragonal structure. The tetragonal factor (c/a) decreases with increasing Ca concentration. Dielectric, pyroelectric and ferroelectric studies have been carried out on these films. The effects of introduction of Ca ion in PbTiO3 have also been discussed. 相似文献
4.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films. 相似文献
5.
The surface reaction mechanism of Y2O3 atomic layer deposition (ALD) on the hydroxylated silicon surface is investigated by using density functional theory. The ALD process is designed into two half-reactions, i.e., Cp3Y (Cp = cyclopentadienyl) and H2O half-reactions. For the Cp3Y half-reaction, the chemisorbed complex is formed along with the change of metal-Cp bonding from Y-C(π) to Y-C1(σ). For the H2O half-reactions, the chemisorbed energies are increased with the relief of steric congestion around yttrium metal center. In addition, Gibbs free energy calculations show that it is thermodynamically favorable for the Cp3Y half-reactions. By comparing with the reaction of H2O with {Si}-(O2)YCp, it is thermodynamically more favorable and kinetically less favorable for the reactions of H2O with {Si}-OYCp2 as well as with {Si}-OYCp(OH). 相似文献
6.
M. Modreanu J. Sancho-Parramon B. Servet C. Eypert A. Knowles M.-F. Ravet 《Applied Surface Science》2006,253(1):328-334
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV. 相似文献
7.
High-k HfO2-Al2O3 composite gate dielectric thin films on Si(1 0 0) have been deposited by means of magnetron sputtering. The microstructure and interfacial characteristics of the HfO2-Al2O3 films have been investigated by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE). Analysis by XRD has confirmed that an amorphous structure of the HfO2-Al2O3 composite films is maintained up to an annealing temperature of 800 °C, which is much higher than that of pure HfO2 thin films. FTIR characterization indicates that the growth of the interfacial SiO2 layer is effectively suppressed when the annealing temperature is as low as 800 °C, which is also confirmed by spectroscopy ellipsometry measurement. These results clearly show that the crystallization temperature of the nanolaminate HfO2-Al2O3 composite films has been increased compared to pure HfO2 films. Al2O3 as a passivation barrier for HfO2 high-k dielectrics prevents oxygen diffusion and the interfacial layer growth effectively. 相似文献
8.
HfNxOy thin films were deposited on Si substrates by direct current sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). SEM indicates that the film is composed of nanoparticles. AFM indicates that there are no sharp protrusions on the surface of the film. XRD pattern shows that the films are amorphous. The field electron emission properties of the film were also characterized. The turn-on electric field is about 14 V/μm at the current density of 10 μA/cm2, and at the electric field of 24 V/μm, the current density is up to 1 mA/cm2. The field electron emission mechanism of the HfNxOy thin film is also discussed. 相似文献
9.
Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films 总被引:1,自引:0,他引:1
Spinel LiNixMn2−xO4 (x≤0.9) thin films were synthesized by a sol-gel method employing spin-coating. The Ni-doped films were found to maintain cubic structure at low x but to exhibit a phase transition to tetragonal structure for x≥0.6. Such cubic-tetragonal phase transition can be explained in terms of Ni3+(d7) ions with low-spin (t2g6,eg1) configuration occupying the octahedral sites of the compound, thus being subject to the Jahn-Teller effect. By X-ray photoelectron spectroscopy both Ni3+ and Ni2+ ions were detected where Ni2+ is more populated than Ni3+. Optical properties of the LiNixMn2−xO4 films were investigated by spectroscopic ellipsometry in the visible-ultraviolet range. The measured dielectric function spectra mainly consist of broad absorption structures attributed to charge-transfer transitions, O2−(2p)→Mn4+(3d) for 1.9 (t2g) and 2.8-3.0 eV (eg) structures and O2−(2p)→Mn3+(3d) for 2.3 (t2g) and 3.4-3.6 eV (eg) structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as being due to d-d crystal-field transitions within the octahedral Mn3+ ion. In terms of these transitions, the evolution of the optical absorption spectrum of LiMn2O4 by Ni doping could be explained and the related electronic structure parameters were obtained. 相似文献
10.
Zr-Ti and Hf-Ti composite nitrates were successfully developed as single-source precursors for the chemical vapor deposition (CVD) of ZrxTi1−xO2 and HfxTi1−xO2 thin films. The Zr-Ti nitrate can be assumed as a solid solution of the individual Zr and Ti nitrates, and the Zr/Ti molar ratio in the deposited ZrxTi1−xO2 films is consistent with that in the precursor. The Hf-Ti nitrate appears to be a mixture of the Hf and Ti nitrates and the composition of the deposited HfxTi1−xO2 films depends remarkably on the heating time of precursor. Both ZrxTi1−xO2 and HfxTi1−xO2 films exhibit trade-off properties between band gap and dielectric constant. The obtained results suggest that ZrxTi1−xO2 and HfxTi1−xO2 films are promising candidates for gate dielectric application to improve the scalability and reduce the leakage current of the future complementary metal-oxide-semiconductor (CMOS) devices. 相似文献
11.
The ellipsometric characterizations of amorphous beryllium nitride (a-Be3N2) thin films deposited on Si (1 0 0) and quartz at temperature <50 °C using reactive RF sputtering deposition were examined in the wavelength range 280-1600 nm. X-ray diffraction of the films showed no structure, suggesting the Be3N2 films grown on the substrates are amorphous. The composition and chemical structures of the amorphous thin films were determined by using electron spectroscopy for chemical analysis. The surface morphology of a-Be3N2 was characterized by atomic force microscopy. The thicknesses and optical constants of the films were derived from spectroscopic ellipsometry measurements. The variation of the optical constants with thickness of the deposited films has been investigated. From the angle dependence of the polarized reflectivity we deduced a Brewster angle of 64°. At any angle of incidence, the a-Be3N2 shown high transmissivity (80-99%) and low reflectivity (<18%) in the visible and near infrared regions. Hence, the a-Be3N2 could be a good candidate for antireflection optical coatings under conditions of optimized the type of polarization and the angle of incidence. 相似文献
12.
Ferroelectric BaTiO3 nanocrystalline films (BTNFs) with the crystalline sizes of about 30 nm were grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. Spectroscopic ellipsometry (SE) was used to characterize the films in the photon energy range of 1.5-5.0 eV with a five-phase layered model (air/surface rough layer/BaTiO3/interface layer/Pt). The optical properties in the transparent and absorption regions have been investigated with the Forouhi-Bloomer dispersion relation. With the aid of the structural and dielectric function models, the microstructure and electronic structure of the BTNFs can be readily obtained. It was found that the refractive index reaches the value of 2.20 in the transparent region. Based on the Sellmeier dispersion analysis, the single-oscillator energy is about 4.7 eV for the BTNFs. The long wavelength refractive index n(0) can be estimated to about 2.00 at zero point. The direct optical band gap energy approaches approximately 4.2 eV and Urbach band tail energy is 262±2 and 268±1 meV respectively with increasing crystalline size. A higher band gap observed can be owing to the known quantum confinement effect in the nanocrystalline formation and different fraction of amorphous and crystalline components. The theoretical analysis based on the effective mass approximation theory is well used to explain these experimental data. 相似文献
13.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface. 相似文献
14.
A phenomenological Landau–Devonshire thermodynamic theory is used to describe the effects of anisotropic in-plane misfit strains on equilibrium polarization states and dielectric properties of single domain epitaxial Pb(Zr1−xTix)O3 thin films grown on dissimilar orthorhombic substrates. Compared with the “isotropic in-plane misfit strains-temperature” phase diagrams, the characteristic features of “misfit strain-misfit strain” and “misfit strain-temperature” phase diagrams under the circumstance of strain anisotropy are the presence of four different phases (a′, a″, a′c, and a″c) and the direct 90° polarization switching between c phase and a′ phase (or a″ phase), between a′ phase and a″ phase. The misfit strain dependence of polarization components, the small-signal dielectric responses and the tunabilities at room temperature are also calculated. We find that the phase diagrams and dielectric properties largely depend on anisotropic in-plane misfit strains as well. Moreover, the strain anisotropy will lead to the polarization and dielectric anisotropy. 相似文献
15.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated. 相似文献
16.
P. Bose I. Mertig J. Henk 《Journal of Electron Spectroscopy and Related Phenomena》2010,182(3):97-102
The spin- and angle-resolved photoelectron spectroscopy from ultrathin Cr films on Fe(1 1 0) is investigated by means of first-principles electronic structure and photoemission calculations. The antiferromagnetic ordering in the Cr films leads in dependence on film thickness to a rapidly decreasing and oscillating photoelectron spin polarization, in reasonable agreement with recent experiments (Dedkov (2007) [1]). The oscillation period is explained by quantum-well states in the Cr film and by a Fermi surface nesting vector. The importance of transition matrix elements is highlighted. The findings point to a noncollinear magnetic structure at the Fe/Cr interface. 相似文献
17.
Jiangping He 《Applied Surface Science》2006,252(15):5284-5287
The atomic and electronic structures of the Si(0 0 1)-c(4 × 4) surface have been studied by scanning tunneling microscopy (STM) and density functional theory (DFT). To explain the experimental bias dependent STM observations, a modified mixed ad-dimer reconstruction model is introduced. The model involves three tilted Si dimers and a carbon atom incorporated into the third subsurface layer per c(4 × 4) unit cell. The calculated STM images show a close resemblance to the experimental ones. 相似文献
18.
X-ray powder diffraction (XRD) of MgPc indicated that the material in the powder form is polycrystalline with monoclinic structure. Miller indices, h k l, values for each diffraction peak in XRD spectrum were calculated. Thermal evaporation technique was used to deposit MgPc thin films. The XRD studies were carried out for MgPc thin films where the results confirm the amorphous nature for the as-deposited films. While, polycrystalline films orientated preferentially to (1 0 0) plane with an amorphous background were obtained for films annealed at 623 K for 3 h. Optical properties of MgPc thin films were characterised by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. According to the analysis of dispersion curves, the parameters, namely; the optical absorption coefficient (α), molar extinction coefficient (?molar), oscillator energy (Eos), oscillator strength (f), and electric dipole strength (q2) were also evaluated. The recorded absorption measurements in the UV-vis region show two well defined absorption bands of phthalocyanine molecule; namely the Q-band and the Soret (B-band). The Q-band showed its splitting characteristic (Davydov splitting), and ΔQ was obtained as 0.15 eV. The analysis of the spectral behaviour of the absorption coefficient (α), in the absorption region revealed indirect transitions. The transport and the near onset energy gaps were estimated as respectively 2.74 ± 0.02 and 1.34 ± 0.01 eV. 相似文献
19.
V. Ilcheva P. Petkov V. Boev F. Sima C.N. Mihailescu C. Popov 《Applied Surface Science》2009,255(24):9691-9694
Thin (AsSe)100−xAgx films have been grown onto quartz substrates by vacuum thermal evaporation or pulsed laser deposition from the corresponding bulk materials. The amorphous character of the coatings was confirmed by X-ray diffraction investigations. Their transmission was measured within the wavelength range 400-2500 nm and the obtained spectra were analyzed by the Swanepoel method to derive the optical band gap Eg and the refractive index n. We found that both parameters are strongly influenced by the addition of silver to the glassy matrix: Eg decreases while n increases with Ag content. These variations are discussed in terms of the changes in the atomic and electronic structure of the materials as a result of silver incorporation. 相似文献
20.
Fan Yang 《Solid State Communications》2007,141(10):555-558
Long wavelength optical lattice vibration and dielectric constants of the quaternary mixed crystal Zn1−x−yMgyBexSe are investigated based on the pseudo-unit-cell mode and Born-Huang procedure. It is found that this material shows a three-mode behavior and the oscillator strength of each mode is mainly controlled by only one component. The theoretical results also show that the linear interpretation method for dielectric constants is reliable. The vibrational frequencies and the oscillator strengths of the ternary mixed crystals BexZn1−xSe, BexMg1−xSe and MgxZn1−xSe are also calculated as special cases of the quaternary mixed crystal for comparing with experiments. The calculation shows agreement with the experimental results. 相似文献