首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper was to address the relationship between the porosity and micro-mechanical properties of the Ni-based alloy coatings which were prepared by a novel plasma-spraying system. The porosity and the mechanical properties of the coatings varied through changing the spraying parameters. Experimental results showed that the measured data of porosity, Young’s modulus and micro-hardness of the coating exhibited high scattering and followed the Weibull distribution. From statistic trend, the micro-hardness and Young’s modulus of the coating decreased with increasing the porosity of the coating. Moreover, generally, with increasing the micro-hardness of the coating, Young’s modulus of the coating increased.  相似文献   

2.
The aim of this paper was to investigate the effect of powder feed rate (PFR) on the microstructure and mechanical properties of the supersonic plasma-sprayed Ni-Cr-B-Si-C coatings. The microstructure, porosity and mechanical properties of the coatings and the residual stresses at the coating surfaces were experimentally determined. Results showed that the variations of porosity, elastic moduli and micro-hardness of the coatings followed Weibull distribution. From the statistical trend, the porosity of the coating increased with increasing PFR. However, the elastic modulus and the micro-hardness of the coating decreased and reached local minima and then increased with increasing PFR. Elastic modulus could be generally considered to be an increasing function of micro-hardness. The mean value of the elastic modulus of the coating calculated from Weibull plot was almost proportional to the square root of the mean value of the micro-hardness of the coating. Moreover, with increasing PFR, the residual stress at the coating surface, which was mainly governed by the elastic modulus of the coating, decreased to a local minimum and then increased.  相似文献   

3.
MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites were prepared using a supersonic plasma spraying at the power of 40 kW, 45 kW, 50 kW and 55 kW, respectively. Effect of spraying power on the microstructure and bonding strength of MoSi2-based coatings was studied. The results show that coatings become more and more compact and the bonding strength increases when the spraying power increases from 40 kW to 50 kW. At the power of 50 kW, the coatings were dense and the bonding strength reached a maximum value of 14.5 MPa. As the spraying power is of sufficient magnitude, many cracks and pores reappaer in coatings and the bonding strength between coating and substrate also decreases.  相似文献   

4.
The electrochemical corrosion of plasma spray Ni-coated WC cermet coatings, after laser treatment, has been studied in 3.5% NaCl solution through immersion test. The main corrosion mechanism for as-sprayed coating is the galvanic corrosion between coating and substrate, resulting in the detachment of coating from substrate, while the homogeneous corrosion occurs for the laser treatment coating. However, the corrosion trace for the as-sprayed pure coating could not be found. It is found that the electrochemical corrosion has been found heavily depending on the galvanic corrosion between the coating and the substrate. The defects, such as pores and laminar structures in the coating, could act as the infiltration paths of the electrolyte.  相似文献   

5.
Adhesive and cohesive properties of the plasma-sprayed hydroxyapatite (HA) coatings, deposited on Ti-6Al-4V substrates by varying the plasma power level and spray distance (SD), were evaluated by an indentation method. The crystallinity and the porosity decreased with increasing both of these two parameters. The microhardness value, Young's modulus (E) and coating fracture toughness (KC) were found to increase with a combinational increase in spray power and SD. The Knoop and Vickers indentation methods were used to estimate E and KC, respectively. The critical point at which no crack appears at the interface was determined by the interface indentation test. This was used to define the apparent interfacial toughness (KCa) which is representative of the crack initiation resistance of the interface. It was found that KCa reaches to a maximum at a medium increase in both spray power and SD, while other mechanical properties of the coatings reaches to the highest value with further increase in these two plasma parameters. The tensile adhesion strength of the coatings, measure by the standard adhesion test, ISO 13779-4, was shown to alter in the same manner with KCa results. It was deduced that a combinational increase in spray power and SD which leads to a higher mechanical properties in the coatings, does not necessarily tends to a better mechanical properties at the interface.  相似文献   

6.
Lanthanum silicate coatings were deposited onto stainless steel substrates by atmospheric plasma spraying (APS) using mechanically mixed (type A) and calcined feedstock (type B) powders. The phase composition, microstructure, density and porosity of coatings prepared from the two types of powder were compared.  相似文献   

7.
Al2O3 and Al2O3-Al composite coatings were prepared by plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction (XRD), while optical microscopy (OM) and scanning electron microscopy (SEM) were employed to investigate the morphology of impacted droplets, polished and fractured surface, and the element distribution in terms of wavelength-dispersive spectrometer (WDS). Mechanical properties including microhardness, adhesion and bending strength, fracture toughness and sliding wear rate were evaluated. The results indicated that the addition of Al into Al2O3 was beneficial to decrease the splashing of impinging droplets and to increase the deposition efficiency. The Al2O3-Al composite coating exhibited homogeneously dispersed pores and the co-sprayed Al particles were considered to be distributed in the splat boundary. Compared with Al2O3 coating, the composite coating showed slightly lower hardness, whereas the coexistence of metal Al phase and Al2O3 ceramic phase effectively improved the toughness, strength and wear resistance of coatings.  相似文献   

8.
This paper investigates the effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coatings deposited on carbon fiber reinforced epoxy composites (CFRE composites). The bond strength between the Zn-Al coatings and the substrates was tested on a RGD-5 tensile testing machine. The microstructures and phase composition of the as-sprayed coatings were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results showed that both the melting extent of Zn-Al particles and the bond strength of the coatings were evidently improved by increasing the spraying power. Moreover, the content of crystalline Zn-Al coatings was slightly changed. Observation of fracture surfaces showed that the Zn-Al coatings could bond well with the carbon fiber bundles using 40 kW spraying power.  相似文献   

9.
This work studied the possibility of using a sensor based on plasma-sprayed zinc oxide (ZnO) sensitive layer for NO2 detection. The atmospheric plasma spray process was employed to deposit ZnO gas sensing layer and the obtained coating structure was characterized by scanning electron microscopy and X-ray diffraction analysis. The influences of gas concentration, working temperature, water vapor in testing air on NO2 sensing performance of the ZnO sensors were studied. ZnO sensors showed a good sensor response and selectivity to NO2 at an optimal working temperature.  相似文献   

10.
Hydroxyapatite (HA) is a bioactive material because its chemical structure is close to the natural bone. Its bioactive properties make it attractive material in biomedical applications. Gas tunnel type plasma spraying (GTPS) technique was employed in the present study to deposit HA coatings on SUS 304 stainless steel substrate. GTPS is composed of two plasma sources: gun which produces internal low power plasma (1.3-8 kW) and vortex which produces the main plasma with high power level (10-40 kW). Controlling the spraying parameters is the key role for spraying high crystalline HA coatings on the metallic implants. In this study, the arc gun current was changed while the vortex arc current was kept constant at 450 A during the spraying process of HA coatings. The objective of this study is to investigate the influence of gun current on the microstructure, phase crystallinity and hardness properties of HA coatings. The surface morphology and microstructure of as-sprayed coatings were examined by scanning electron microscope. The phase structure of HA coatings was investigated by X-ray diffraction analysis. HA coatings sprayed at high gun current (100 A) are dense, and have high hardness. The crystallinity of HA coatings was decreased with the increasing in the gun current. On the other hand, the hardness was slightly decreased and the coatings suffer from some porosity at gun currents 0, 30 and 50 A.  相似文献   

11.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

12.
Al-C-N thin films with different Al contents were deposited on Si (1 0 0) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon and nitrogen gases. These films were subsequently vacuum-annealed at 700 °C and 1000 °C, respectively. The microstructures of as-deposited and annealed films were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM); while the hardness and elastic modulus values were measured by nano-indention method. The results indicated that the microstructure of both as-deposited and annealed Al-C-N films strongly depended on Al content. For thin films at low Al content, film delamination rather than crystallization occurred after the sample was annealed at 1000 °C. For thin films at high Al content, annealing led to the formation of AlN nanocrystallites, which produced nanocomposites of AlN embedded into amorphous matrices. Both the density and size of AlN nanocrystallites were found to decrease with increasing depth from the film surface. With increasing of annealing temperature, both hardness and elastic modulus values were decreased; this trend was decreased at high Al content. Annealing did not change elastic recovery property of Al-C-N thin films.  相似文献   

13.
The microstructure and mechanical properties of white clam shell were investigated, respectively. It can be divided into horny layer, prismatic layer and nacreous layer. Crossed-lamellar structure was the microstructural characteristic. The extension direction of lamellae in prismatic layer was different from that in nacreous layer, which formed an angle on the interface between prismatic layer and nacreous layer. The phase component of three layers was CaCO3 with crystallization morphology of aragonite, which confirmed the crossed-lamellar structural characteristic. White calm shell exhibited perfect mechanical properties. The microhardness values of three layers were 273 HV, 240 HV and 300 HV, respectively. The average values of flexure and compression strength were 110.2 MPa and 80.1 MPa, respectively. The macroscopical cracks crossed the lamellae and finally terminated within the length range of about 80 μm. It was the microstructure characteristics, the angle on the interface between prismatic and nacreous layer and the hardness diversity among the different layers that enhanced mechanical properties of white calm shell.  相似文献   

14.
Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al2O3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.  相似文献   

15.
The mechanical properties and microstructure of Nd-Fe-B magnets produced at various die-upset levels have been investigated. The results showed that the Vickers hardness and the fracture toughness of Nd-Fe-B magnets first increased, and then rapidly decreased with the increase in die-upset level. The optimum Vickers hardness and the fracture toughness were obtained at the die-upset level of 40%. The peak intensity of the (1 0 5) peak is the maximum value, the relative intensities of the (2 1 2), (2 1 4) and (3 1 4) peaks decline and the relative intensity of the (0 0 6) peak increases with the increase in die-upset level. The microstructures show that the variation in the size of small spherical grains is not obvious, and the volume fraction of small spherical grains declines gradually with the increase in die-upset level.  相似文献   

16.
A series of Zr-Si-N composite films with different Si contents were synthesized in an Ar and N2 mixture atmosphere by the bi-target reactive magnetron sputtering method. These films’ composition, microstructure and mechanical properties were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and nanoindentation. Experimental results revealed that after the addition of silicon, Si3N4 interfacial phase formed on the surface of ZrN grains and prevented them from growing up. Zr-Si-N composite films were strengthened at low Si content with the hardness and elastic modulus reaching their maximum values of 29.8 and 352 GPa at 6.2 at% Si, respectively. With a further increase of Si content, the crystalline Zr-Si-N films gradually transformed into amorphous, accompanied with a remarkable fall of films’ mechanical properties. This limited enhancement of mechanical properties in the Zr-Si-N films may be due to the low wettability of Si3N4 on the surface of ZrN grains.  相似文献   

17.
In this paper, the plasma sprayed coatings were treated by laser remelting. The morphologies, elements analysis and phases of both sprayed and remelted coatings were studied by means of electron probe microanalysis (EPMA), X-ray diffraction (XRD) and so on. The results show that the structure of the sprayed coatings is coarse, the amorphization of HA is tremendous, and the bonding state between the coating and the substrate is mechanical combination. After the sprayed coatings were treated by laser remelting in a proper conditions, the properties of the coatings are improved greatly. The microstructure of remelted coatings is columnar and cellular dendritic crystal which is homogeneous and compact, and the coating consists of HA, -TCP and CaO phases, the Ca/P ratio of transition layer is close to 1.67, but the Ca/P ratio of surface layer is higher than that of HA because of the loss of P.  相似文献   

18.
Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.  相似文献   

19.
《Current Applied Physics》2018,18(5):512-518
High-entropy alloy (AlCrNbSiTiV)N nitride films are prepared using direct current (dc) reactive magnetron sputtering, with an equiatomic AlCrNbSiTiV alloy target. Experiments using the grey-Taguchi method are conducted to determine the effect of deposition parameters (dc power, substrate temperature, N2/(N2+Ar) flow rate and substrate bias) on the microstructure, mechanical and tribological properties. Orthogonal array (L9 34), signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. The coated films are examined using scanning electron microscopy, an atomic force microscope, transmission electron microscopy (TEM), a tribometer and a nanoindenter. The TEM patterns confirm that the (AlCrNbSiTiV)N nitride films have a simple face-center-cubic structure. The experimental results show that a (AlCrNbSiTiV)N film coating significantly improves the mechanical properties. In the confirmation runs, using grey relational analysis, the improvement in friction coefficient is 32.5%, in corrosion current is 28.6%, in hardness H is 29.4%, in elastic modulus E is −18.3%, in H/E is 57.1 and in H3/E2 is 225.0%. The samples with (AlCrNbSiTiV)N film coating are classified as HF1 and exhibit good adhesive strength.  相似文献   

20.
Ti-B-C-N nanocomposite coatings with different C contents were deposited on Si (1 0 0) and high speed steel (W18Cr4V) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon, nitrogen and acetylene gases. These films were subsequently characterized ex situ in terms of their microstructures by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), their nanohardness/elastic modulus and facture toughness by nano-indention and Vickers indentation methods, and their surface morphology using atomic force microscopy (AFM). The results indicated that, in the studied composition range, the deposited Ti-B-C-N coatings exhibit nanocomposite based on TiN nanocrystallites. When the C2H2 flow rate is small, incorporation of small amount of C promoted crystallization of Ti-B-C-N nanocomposite coatings, which resulted in increase of nano-grain size and mechanical properties of coatings. A maximum grain size of about 8 nm was found at a C2H2 flux rate of 1 sccm. However, the hardness, elastic modulus and fracture toughness values were not consistent with the grain size. They got to their maximum of 35.7 GPa, 363.1 GPa and 2.46 MPa m1/2, respectively, at a C2H2 flow rate of 2 sccm (corresponding to about 6 nm in nano-grain size). Further increase of C content dramatically decreased not only grain size but also the mechanical properties of coatings. The presently deposited Ti-B-C-N coatings had a smooth surface. The roughness value was consistent with that of grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号