首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl2. From AFM the roughness of the films showed a heavy dependence on CdCl2 concentration. In the presence of 4% CdCl2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.  相似文献   

2.
A route towards optimisation of uniformity and density of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy (MOVPE) through successive variations of the growth parameters is reported. It is demonstrated that a key parameter in obtaining a high density of quantum dots is the V/III ratio, a fact which was shown to be valid when either AsH3 (arsine) or tertiary-butyl-arsine (TBA) were used as group V precursors. Once the optimum V/III ratio was found, the size distribution was further improved by adjusting the nominal thickness of deposited InAs material, resulting in an optimum thickness of 1.8 monolayers of InAs in our case. The number of coalesced dots was minimised by adjusting the growth interruption time to approximately 30 s. Further, the uniformity was improved by increasing the growth temperature from 485 °C to 520 °C. By combining these optimised parameters, i.e. a growth temperature of 520 °C, 1.8 monolayers InAs thickness, 30 s growth stop time and TBA as group V precursor, a full-width-half-maximum (FWHM) of the low temperature luminescence band of 40 meV was achieved, indicating a narrow dot size distribution.  相似文献   

3.
Influence of ZrO2 in HfO2 on the reflectance of HfO2/SiO2 multilayer at 248 nm was investigated. Two kinds of HfO2 with different ZrO2 content were chosen as high refractive index material and the same kind of SiO2 as low refractive index material to prepare the mirrors by electron-beam evaporation. The impurities in two kinds of HfO2 starting coating materials and in their corresponding single layer thin films were determined through glow discharge mass spectrum (GDMS) technology and secondary ion mass spectrometry (SIMS) equipment, respectively. It showed that between the two kinds of HfO2, either the bulk materials or their corresponding films, the difference of ZrO2 was much larger than that of the other impurities such as Ti and Fe. It is the Zr element that affects the property of thin films. Both in theoretical and in experimental, the mirror prepared with the HfO2 starting material containing more Zr content has a lower reflectance. Because the extinction coefficient of zirconia is relatively high in UV region, it can be treated as one kind of absorbing defects to influence the optical property of the mirrors.  相似文献   

4.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

5.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

6.
To quantify the changes in the geometric shielding effect in a molecule as the incident electron energy varies, an empirical fraction, which represents the total cross section contributions of shielded atoms in a molecule at different energies, is presented. Using this empirical fraction, the total cross sections for electron scattering by CH4, C2H6, C2H3F3, C2H4, C2F4, C2Cl4 and C2Cl2F2 are calculated over a wide energy range from 30 to 5000 eV by the additivity rule model at the Hartree-Fock level. The quantitative total cross sections are compared with those obtained by experiment and other theories where available. Good agreement is attained above 100 eV.  相似文献   

7.
Transient optical Kerr effect of liquids C2H4Cl2 and C2H4Br2 is investigated, for the first time to our knowledge, with a femtosecond (fs) probe laser delayed with respect to a coherent fs pump laser. Coherent coupling and electronic Kerr signals are observed around zero delay when pump and probe overlap. Persisting after the pump-probe overlap are Kerr signals arising from the torsional and other intramolecular vibrations of the trans and gauche conformations; Kerr signals arising from the intermolecular motion are also observed. Vibrational quantum interference is only observed in liquid C2H4Br2 and the related beats data are fitted with the torsional vibrations, 91 cm−1 (gauche) and 132 cm−1 (trans), and the CCBr angle-bending vibrations, 231 cm−1 (gauche) and 190 cm−1 (trans), with dephasing times, 0.45 ps, 0.45 ps, 2 ps, and 1.5 ps, respectively. These vibrational frequencies agree with those obtained in the frequency-domain. That no vibrational mode is observed for C2H4Cl2 might be attributed to ineffective Raman-pumping. Kerr signals observed after the pump-probe overlap are Fourier transformed to give the spectra of the intermolecular motion and the vibrational spectrum, which agrees with the one observed in the infrared absorption and/or Raman scattering heretofore.  相似文献   

8.
Luminescent nanocrystalline Si dots were fabricated directly on thermally grown SiO2 at 120°C by conventional RF plasma-enhanced chemical vapor deposition using tetrachlorosilane, SiCl4 and H2. As-deposited Si dot exhibits photoluminescence (PL) in the visible region, consisting of two broad bands corresponding to photon energies of 1.38 and 1.48 eV. Storage in air enhances PL and shifts the PL peak energy to higher wavelengths for dots of diameter less than 10 nm. Fourier transform attenuated total reflection absorption spectroscopy (FTIR-ATR) study reveals that the spontaneous oxidation proceeds until saturation after 70 h at dot sizes of 3–5 nm. The relationship between PL intensity, blueshift of PL peak energy, and surface termination species during oxidation indicates that these changes are attributed to the increased density of radiative centers at the Si nanocrystal dot/SiO2 interface and enhancement of the quantum confinement effect.  相似文献   

9.
Energy loss spectra of 2.5 keV electrons in the region of the carbon K-edge in C2H2, C2H4, C2H6 and C6H6 are report  相似文献   

10.
The amorphous-to-crystalline transition of Ge/Sb2Te3 nanocomposite multilayer films with various thickness ratios of Ge to Sb2Te3 were investigated by utilizing in situ temperature-dependent film resistance measurements. The crystallization temperature and activation energy for the crystallization of the multilayer films increased with the increase in thickness ratio of Ge to Sb2Te3. The difference in sheet resistance between amorphous and crystalline states could reach as high as 104 Ω/□. The crystallization temperature and activation energy for the crystallization of Ge/Sb2Te3 nanocomposite multilayer films was proved to be larger than that of conventional Ge2Sb2Te5 film, which ensures a better data retention for phase-change random access memory (PCRAM) use. A data retention temperature for 10 years of the amorphous state [Ge (2 nm)/Sb2Te3 (3 nm)]40 film was estimated to be 165 °C. Transmission electron microscopy (TEM) images revealed that Ge/Sb2Te3 nanocomposite multilayer films had layered structures with clear interfaces.  相似文献   

11.
The electronic structures and absorption spectra for both the perfect PbWO4 (PWO) crystal and the three types of PWO crystals, containing VPb2−, VO2+ and a pair of VPb2−-VO2+, respectively, have been calculated using CASTEP codes with the lattice structure optimized. The calculated absorption spectra indicate that the perfect PWO crystal does not occur absorption band in the visible and near-ultraviolet region. The absorption spectra of the PWO crystal containing VPb2− exhibit seven peaks located at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), respectively. The absorption spectra of the PWO crystal containing VO2+ occur two peaks located at 370 nm and 420 nm. The PWO crystal containing a pair of VPb2−-VO2+ does not occur absorption band in the visible and near-ultraviolet region. This leads to the conclusions that the 370 and 420 nm absorption bands are related to the existence of both VPb2− and VO2+ in the PWO crystal and the other absorption bands are related to the existence of the VPb2− in the PWO crystal. The existence of the pair of VPb2−-VO2+ has no visible effects on the optical properties. The calculated polarized optical properties are well consistent with the experimental results.  相似文献   

12.
Properties of surface defect states of CdTexS1 − x quantum dots with an average diameter of 7 nm are investigated experimentally. The stoichiometric ratio is found to be for by use of the energy dispersive analysis of x-ray. The photoluminescence spectrum, the photoluminescence excitation spectrum, and the surface passivation are adopted to characterize the properties of surface defect states. The energy levels of surface defect states of CdTexS1 − x quantum dots are also determined.  相似文献   

13.
The thermal evolution of acetylene and ethylene on a palladium (111) surface has been studied by high-resolution electron energy loss spectroscopy in the temperature range 150K–500K. Formation of ethylidyne ( CCH3) near room temperature is important for both molecules, whereas CH is the major surfaces hydrocarbon species formed at high temperatures.  相似文献   

14.
ZnO active layers on ZnO buffer layers were grown at various O2/O2 + Ar flow-rate ratios by using radio-frequency magnetron sputtering. Atomic force microscopy images showed that the surface roughnesses of the ZnO active layers grown on ZnO buffer layers decreased with decreasing O2 atmosphere, indicative of an improvement in the ZnO surfaces. The type of the ZnO active layer was n-type, and the resistivity of the layer increased with increasing O2 atmosphere. Photoluminescence spectra from the ZnO active layers grown on the ZnO buffer layers showed dominant peaks corresponding to local levels in the ZnO energy gap resulting from oxygen vacancies or interstitial zinc vacancies, and the peak positions changed significantly with the O2/O2 + Ar flow rate. These results can help improve understanding of the dependences of the surface and the optical properties on the O2/O2 + Ar ratio for ZnO thin films grown on ZnO buffer layers.  相似文献   

15.
The surface roughness of the semiconductor substrate substantially influences properties of the whole semiconductor/oxide structure. SiO2/Si structures were prepared by using low temperature nitric acid oxidation of silicon (NAOS) method and then the whole structure was passivated by the cyanidization procedure. The influence of the surface morphology of the silicon substrate onto the electrical properties of ultrathin NAOS SiO2 layer was investigated. Surface height function properties were studied by the AFM method and electrical properties were studied by the STM method. The complexity of analyzed surface structure was sensitive to the oxidation and passivation steps. For describing changes in the oxide layer structure, several fractal measures in an analysis of the STM images were used. This fractal geometry approach enables quantifying the fine spatial changes in the tunneling current spectra.  相似文献   

16.
We report about the synthesis of carbon nanotubes by catalytic LCVD (C-LCVD), using a CW CO2 laser and alternatively, C2H2/C2H4/NH3 and C2H2/C2H4-containing gas mixtures. Different core–shell Fe–C nanocomposites (as synthesized and toluene extracted) were used employed as catalysts. The nanotubes grown from Fe–C residue demonstrate the lowest mean diameters. Prevalent curled and coiled morphologies are obtained for the CNTs grown in the presence of ammonia.  相似文献   

17.
The substrate treatment with seeding promoter can promote the two-dimensional material lateral growth in chemical vapor deposition(CVD) process. Herein, graphene quantum dots(GQDs) as a novel seeding promoter were used to obtain uniform large-area MoS_2 monolayer. The obtained monolayer MoS_2 films were confirmed by optical microscope,scanning electron microscope, Raman and photoluminescence spectra. Raman mapping revealed that the MoS_2 monolayer was largely homogeneous.  相似文献   

18.
Electronic structures and absorption spectra for perfect PbW04 (PWO) crystals and the crystal containing aggregated defect [V^2- Pb-V^2+ o-V^2- Pb]^2-have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing the aggregated defect [V^2- Pb-V^2+ o-V^2- Pb]^2-exhibit two absorption bands peaking at 1.90eV (65Onto) and 3.02eV (41Onto). It is predicted that the 420 and fiSOnm absorption bands are related to the existence of the aggregated defect [V^2- Pb-V^2+ o-V^2- Pb]^2-in the PWO crystal.  相似文献   

19.
Optical transitions in Ge nanocrystals formed by high-pressure annealing of the Ge+ ion implanted SiO2 films have been studied by Raman and photoluminescence spectroscopy. It has been found that the E1,E1+Δ1 Raman resonance shift observed from the unstrained and hydrostatically compressed nanocrystals corresponds to the quantization of the electron-hole state spectrum of the Ge band. It has also been established that the appearance of a green photoluminescence band centered at 420-520 nm correlates with the formation of strained nanocrystals. Comparisons of the PL data with HRTEM results have been made, which suggest that the green PL arises from strained Ge nanocrystals of a radius of less than 5 nm. The direct electron-hole recombination at Γ is discussed as a possible origin of the observed photoluminescence band.  相似文献   

20.
Positron-lifetime experiments have been carried out on two undoped n-type liquid encapsulated Czochralski (LEC)-grown InP samples with different stoichiometric compositions in the temperature range 10-300 K. For temperatures below 120 K for P-rich InP and 100 K for In-rich InP, the positron average lifetime began to increase rapidly and then leveled off, which was associated with the charge state change of hydrogen indium vacancy complexes from (VInH4)+ to (VInH4)0. This phenomenon was more obvious in P-rich samples that have a higher concentration of VInH4. The transformation temperature of approximately 120 K suggests that the complex VInH4 is a donor defect and that the ionization energy is about 0.01 eV. The ionization of neutral VInH4 accounted for the decrease of the positron average lifetime when the sample was illuminated with a photon energy of 1.32 eV at 70 K. These results provide evidence for hydrogen complex defects in undoped LEC InP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号