首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The diblock copolymer poly(methyl methacrylate)‐b‐poly(sodium sulfonated glycidyl methacrylate) (PMMA‐b‐PSGMA) was end‐attached by its hydrophobic block (PMMA) onto mica hydrophobized by a stearic trimethylammonium iodide (STAI) layer, to form a polyelectrolyte brush immersed in water. With a surface force balance (SFB), we extended earlier measurements between two such brush layers for the case of normal and shear forces at different shear rates, surface separation, and compressions between one mica surface coated with STAI or a STAI‐diblock layer against a bare mica surface. After coating one of the surfaces with STAI, a long range attraction that results in a jump into an adhesive flat contact between the hydrophobic and hydrophilic surfaces was observed. A very different behavior was seen after forming the polyelectrolyte brush on the STAI‐coated surface. The long range attraction was replaced by repulsion, accompanied by very low friction during shear (ca. three orders of magnitude lower than with adsorbed polyelectrolytes). On further compression, a weak attraction to the adhesive contact was observed. From the final surface–surface contact separation, we deduce that most of the polyelectrolyte diblock brush layer was squeezed out from the gap, leaving the STAI layer and a small amount of the polymer attached to the surface. Stick‐sliding behavior was seen while applying shear, suggesting a dissipation mechanism caused by the trapped polyelectrolyte. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 193–204, 2005  相似文献   

2.
Dissipative particle dynamics (DPD) was used to investigate the behavior of two opposing end-grafted charged polymer brushes in aqueous media under normal compression and lateral shear. The effect of polymer molecular weight, degree of ionization, grafting density, ionic strength, and compression on the polymer conformation and the resulting shear force between the opposing polymer layers were investigated. The simulations were carried out for the poly(tert-butyl methacrylate)-block-poly(sodium sulfonate glycidyl methacrylate) copolymer, referred as PtBMA-b-PGMAS, end-attached to a hydrophobic surface for comparison with previous experimental data. Mutual interpenetration of the opposing end-grafted chains upon compression is negligible for highly charged polymer brushes for compression ratios ranging from 2.5 to 0.25. Under electrostatic screening effects or for weakly charged polymer brushes, a significant mutual interpenetration was measured. The variation of interpenetration thickness with separation distance, grafting density, and polymer size follows the same scaling law as the one observed for two opposing grafted neutral brushes in good solvent. However, compression between two opposing charged brushes results in less interpenetration relative to neutral brushes when considering equivalent grafting density and molecular weight. The friction coefficient between two opposing polymer-coated surfaces sliding past each other is shown to be directly correlated with the interpenetration thickness and more specifically to the number of polymer segments within the interpenetration layer.  相似文献   

3.
This study investigates the structures of layers of amphiphilic diblock copolymers of poly(t-butyl styrene)-poly(styrene sulfonate) (PtBS-PSS) adsorbed on both the bare mica surface (hydrophilic) and an octadecyltriethoxysilane (OTE)-modified mica surface (hydrophobic). When the surface is rendered hydrophobic, the nonsoluble block exhibits stronger interaction with the surface and higher adsorbed masses are achieved. Interaction forces between two such adsorbed layers on both substrates were measured using the surface forces apparatus. The effect of salt concentration (Cs) and molecular weight (N) on the height of the self-assembled layers (L0) was examined in each case. The resulting scaling relationship is in good agreement with predictions of the brush model, L0 proportional to N(1.0) in the low-salt limit and L0N(-1) proportional to (Cs/sigma)(-0.32) in the salted regime, when adsorption takes place onto the hydrophobized mica surface. For adsorption on the bare mica surface, L0N(-0.7) proportional, variant Cs(-0.17) agrees with the scaling prediction of the sparse tethering model. The results suggest that, on the hydrophilic bare mica surface, the adsorbed amount is not high enough to form a brush structure and only very little intermolecular stretching of the tethered chains occurs; in contrast, the presence of the hydrophobic OTE layer increases the tethering density such that the polyelectrolyte chains adopt a brush conformation.  相似文献   

4.
The normal interaction and the behavior under shear of mica surfaces covered by two different triblock copolymers of polylysine-polydimethysiloxane-polylysine were studied by combining the capabilities of the surface forces apparatus and the atomic force microscopy. At low pH values these copolymers spontaneously adsorb on the negatively charged mica surfaces from aqueous solutions as a consequence of the positive charge of the polylysine moieties. The morphology of the adsorbed layer is determined by the molecular structure of the particular copolymer investigated. This morphology plays a fundamental role on the behavior of the adsorbed layers under shear and compression. While nonadhesive smooth layers oppose an extremely small resistance to sliding, the presence of asperities even at the nanometric scale originates a frictional resistance to the motion. The behavior of uniform nonadhesive nanorough surfaces under shear can be quantitatively understood in terms of a simple multistable thermally activated junction model. The electric charge of the adsorbed copolymer molecules and hence the adhesion energy between the coated surfaces can be modified by varying the pH of the surrounding media. In the presence of an adhesive interaction between the surfaces the behavior under shear is strongly modified. Time-dependent mechanisms of energy dissipation have to be evoked in order to explain the changes observed.  相似文献   

5.
The interaction forces between layers of the triblock copolymer Pluronic F108 adsorbed onto hydrophobic radio frequency glow discharge (RFGD) thin film surfaces and hydrophilic silica, in polymer-free 0.15 M NaCl solution, have been measured using the atomic force microscope (AFM) colloid probe technique. Compression of Pluronic F108 layers adsorbed on the hydrophobic RFGD surfaces results in a purely repulsive force due to the steric overlap of the layers, the form of which suggests that the PEO chains adopt a brush conformation. Subsequent fitting of these data to the polymer brush models of Alexander-de Gennes and Milner, Witten, and Cates confirms that the adsorbed Pluronic F108 adsorbs onto hydrophobic surfaces as a polymer brush with a parabolic segment density profile. In comparison, the interaction between Pluronic F108 layers adsorbed on silica exhibits a long ranged shallow attractive force and a weaker steric repulsion. The attractive component is reasonably well described by van der Waals forces, but polymer bridging cannot be ruled out. The weaker steric component of the force suggests that the polymer is less densely packed on the surface and is less extended into solution, existing as polymeric isolated mushrooms. When the surfaces are driven together at high piezo ramp velocities, an additional repulsive force is measured, attributable to hydrodynamic drainage forces between the surfaces. In comparing theoretical predictions of the hydrodynamic force to the experimentally obtained data, agreement could only be obtained if the flow profile of the aqueous solution penetrated significantly into the polymer brush. This finding is in line with the theoretical predictions of Milner and provides further evidence that the segment density profile of the adsorbed polymer brush is parabolic. A velocity dependent additional stepped repulsive force, reminiscent of a solvation oscillatory force, is also observed when the adsorbed layers are compressed under high loads. This additional force is presumably a result of hindered drainage of water due to the presence of a high volume fraction of polymer chains between the surfaces.  相似文献   

6.
The effect of the uptake of a low-molecular-weight amphiphilic diblock copolymer on the morphology of didodecyldimethylammonium bromide (DDAB) adsorbed layers on mica, the interactions between two coated surfaces, and the frictional properties of the boundary film have been studied using an atomic force microscope and a dynamic surface forces apparatus nanotribometer. When DDAB-coated surfaces in aqueous solution were compressed, hemifusion or removal of the adsorbed surfactant bilayers could not be induced, and no frictional force could be measured between the surfaces, which display superior lateral cohesion and lubricant properties. Coadsorbing octadecyl end modified poly(ethylene oxide) chains at low density facilitates hemifusion, generating significant shear stress and leading to stick-slip instabilities. The mixed films regain their lateral cohesion at higher adsorbed copolymer densities, but an extra short-range attraction brings the adsorbed layers into adhesive contact without causing bilayer hemifusion. Here, noticeable frictional forces are also measured.  相似文献   

7.
Binary brushes constituted from two incompatible polymers can be used in the form of ultrathin polymeric layers as a versatile tool for surface engineering to tune physicochemical surface characteristics such as wettability, surface charge, chemical composition, and morphology and furthermore to create responsive surface properties. Mixed brushes of oppositely charged weak polyelectrolytes represent a special case of responding surfaces that are sensitive to changes in the pH value of the aqueous environment and therefore represent interesting tools for biosurface engineering. The polyelectrolyte brushes used for this study were composed of two oppositely charged polyelelctrolytes poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA). The in-situ properties and surface characteristics such as as surface charge, surface tension, and extent of swelling of these brush layers are functions of the pH value of the surrounding aqueous solution. To test the behavior of the mixed polylelctrolyte brushes in contact with biosystems, protein adsorption experiments with globular model proteins were performed at different pH values and salt concentrations (confinement of counterions) of the buffer solutions. The influence of the pH value, buffer salt concentration, and isoelectric points (IEP) of the brush and protein on the adsorbed amount and the interfacial tension during protein adsorption as well as the protein adsorption mechanism postulated in reference to recently developed theories of protein adsorption on polyelectrolyte brushes is discussed. In the salted regime, protein adsorption was found to be similar to the often-described adsorption at hydrophobic surfaces. However, in the osmotic regime the balance of electrostatic repulsion and a strong entropic driving force, "counterion release", was found to be the main influence on protein adsorption.  相似文献   

8.
Telechelic polymers are useful for surface protection and stabilization of colloidal dispersions by the formation of polymer brushes. A number of theoretical investigations have been reported on a weak attraction between two telechelic brushes when they are at the classical contact, i.e., when the surface separation is approximately equal to the summation of the brush thicknesses. While recent experiments have confirmed the weak attraction between telechelic brushes, its origin remains elusive because of conflicting approximations used in the previous theoretical calculations. In this paper, we have investigated the telechelic polymer-mediated surface forces by using a polymer density functional theory (PDFT) that accounts for both the surface-adhesive energy and segment-level interactions specifically. Within a single theoretical framework, the PDFT is able to capture both the depletion-induced attraction in the presence of weakly adhesive polymers and the steric repulsion between compressed polymer brushes. In comparison of the solvation forces between telechelic brushes with those between brushes formed by surfactant-like polymers and with those between two asymmetric surfaces mediated by telechelic polymers, we conclude that the weak attraction between telechelic brushes is primarily caused by the bridging effect. Although both the surfactant-like and telechelic polymers exhibit a similar scaling behavior for the brush thickness, a significant difference has been observed in terms of the brush microstructures, in particular, the segment densities near the edges of the polymer brushes.  相似文献   

9.
Polyelectrolyte brushes were built on mica by anchoring polystyrene-poly(acrylic acid) (PS-b-PAA) diblock copolymers at a controlled surface density in a polystyrene monolayer covalently attached to OH-activated mica surfaces. Compared to physisorbed polymer brushes, these irreversibly attached charged brushes allow the polymer grafting density to remain constant upon changes in environmental conditions (e.g., pH, salt concentration, compression, and shear). The normal interaction and friction forces as a function of surface separation distance and at different concentrations of added salt (NaCl) were investigated using a surface forces apparatus. The interaction force profiles were completely reversible both on loading and receding and were purely repulsive. For a constant polymer grafting density, the influence of the polyelectrolyte charges and the Debye screening effect on the overall interaction forces was investigated. The experimental interaction force profiles agree very well with scaling models developed for neutral and charged polymer brushes. The variation of the friction force between two PAA brushes in motion with respect to each other as a function of surface separation distance appeared to be similar to that observed with neutral brushes. This similarity suggests that the increase in friction is associated with an increase in mutual interpenetration upon compression as observed with neutral polymers. The effect of the PAA charges and added ions was more significant on the repulsive normal forces than on the friction forces. The reversible characteristics of the normal force profiles and friction measurements confirmed the strong attachment of the PAA brushes to the mica substrate. High friction coefficients (ca 0.3) were measured at relatively high pressures (40 atm) with no surface damage or polymer removal.  相似文献   

10.
The interaction forces between adsorbed polymer layers were investigated. Two types of graft copolymers that were adsorbed on hydrophobic surfaces have been investigated: (i) a graft copolymer consisting of polymethylmethacrylate/polymethacrylic acid back bone (the B chain) on which several poly(ethylene oxide) chains are grafted (to be referred to as PMMA/PEOn); and (ii) a graft copolymer consisting of inulin (linear polyfructose with degree of polymerization > 23) (the A chain) on which several C12 chains are grafted (INUTEC SP1). In the first case adsorbed layers of the graft copolymer were obtained on mica sheets and the interaction forces were measured using the surface force apparatus. In the second case the interaction forces were measured using Atomic Force Microscopy (AFM). For this purpose a hydrophobically modified glass sphere was attached to the tip of the cantilever of the AFM and the glass plate was also made hydrophobic. Both the sphere and the glass plate contained an adsorbed layer of INUTEC SP1.In the surface forces apparatus one essentially measures the energy E(D)–distance D curves for the graft copolymer of PMMA/PEOn between mica surfaces bearing the graft copolymer and this could be converted to interaction energy between flat surfaces. Using the de Gennes scaling theory, it is possible to calculate the interaction energy between the polymer layers. The same graft copolymer was used in latex dispersions and the high frequency modulus G′ was measured as a function of the volume fraction ? of the dispersion. This high frequency modulus could be related to the potential of mean force. In this way one could compare the results obtained from rheology and those obtained from direct measurement of interaction forces.In the AFM method, the interaction forces are measured in the contact area between two surfaces, i.e. a spherical glass particle and a glass plate. Both glass spheres and plates were hydrophobized using dichlorodimethylsilane. Results were obtained for adsorbed layers of INUTEC SP1 in water and in the presence of various concentrations of Na2SO4 (0.3, 0.8, 1.0 and 1.5 mol dm− 3). All results showed a rapid increase of force with a decrease of separation distance and the forces were still repulsive up to the highest Na2SO4 concentration. This explains the high stability of dispersions when using INUTEC SP1 as stabilizer.  相似文献   

11.
The effect of a cationic polyelectrolyte, PCMA, on the forces between two cellulose surfaces and between one cellulose surface and one mica surface has been studied using the interferometric surface force apparatus (SFA). The cellulose surfaces were prepared by Langmuir-Blodgett deposition of trimethylsilyl cellulose onto hydrophobized mica. Prior to measurements the surfaces were desilylated to obtain pure cellulose. Introduction of a cationic polyelectrolyte into the solution drastically changed the interactions between the cellulose layers. It was found that the cationic polyelectrolyte does adsorb onto the cellulose surface, although the adsorbed amount is low. The adsorbed layer is very thin, as expected at a low electrolyte concentration. Before the adsorption has reached equilibrium, when only some polyelectrolyte had adsorbed, the adhesion between the surfaces was high, and it was noted that the cellulose layer was damaged on separation. After a longer adsorption time an electrostatic repulsion and no adhesion were observed between the polyelectrolyte-coated cellulose surfaces. An electrostatic repulsion was observed between cellulose and mica. When cationic polyelectrolyte was introduced to the system it overcompensated the charges on both surfaces, and the range and magnitude of the double-layer force was higher than without polyelectrolyte. The relevance of the results to flocculation mechanism and efficiency in cellulose systems is discussed. Copyright 2000 Academic Press.  相似文献   

12.
We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and poly(N-methyl 2-vinyl pyridinium iodide), and a neutral block (poly(vinyl alcohol)) or neutral grafts (poly(ethylene oxide)). The strength of the attachment of the micellar layers to various substrates was evaluated with Atomic Force Microscopy. Flow cell experiments allowed for the evaluation of long-term stability of coatings in lateral flow. Fixed angle optical reflectometry was used to quantify protein (BSA) adsorption on the micellar layers after their exposure to flow. The results show that adsorbed micellar layers are relatively weakly attached to hydrophobic surfaces and much stronger to hydrophilic surfaces, which has a significant impact on their stability. Adsorbed layers maintain their ability to suppress protein adsorption on hydrophilic surfaces but not on hydrophobic surfaces. Due to the relatively weak attachment to hydrophobic surfaces the structure of adsorbed layers may easily be disrupted by lateral forces, such that the complex coacervate-brush structure no longer exists.  相似文献   

13.
Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces.  相似文献   

14.
The conformation of poly(styrene sulfonate) (PSS) layers physisorbed from 1 M NaCl is determined by force measurements and imaging on two length scales. With colloidal probe technique steric forces as predicted for neutral grafted brushes are observed. On decrease and increase of the NaCl concentration, the grafting density remains constant, yet the brush thickness swells and shrinks reversibly with the salt concentration with an exponent of -0.3. At low salt conditions, the brush length amounts to 30% of the contour length, a behavior known for polyelectrolyte brushes and attributed to the entropy of the counterions trapped in the brush. Between a PSS layer and a pure colloidal silica sphere, the same steric forces are observed, and additionally at large separations (beyond the range of the steric repulsion) an electrostatic force is found. A negatively charged AFM tip penetrates the brush--a repulsive electrostatic force between the tip and surface is found, and single chains can be imaged. Thus, with the nanometer-sized AFM tip, the flatly adsorbed fraction of the PSS chains is seen, whereas the micrometer-sized colloidal probe interacts with the fraction of the chains penetrating into solution.  相似文献   

15.
Employing the colloidal probe AFM technique we have investigated normal and friction forces between flat mica surfaces and silica particles coated with mucin and combined mucin-chitosan layers in presence and absence of anionic surfactant, SDS, in 30 mM NaCl solution. We have shown that the normal interactions between mucin coated mica and silica surfaces are dominated by long-range steric repulsion on both compression and decompression. Friction forces between such mucin layers are characterized by a low effective friction coefficient, mu(eff)=0.03+/-0.02, which is lower than the value of 0.13+/-0.02 observed when chitosan layers were adsorbed. Forces between combined mucin-chitosan layers have also been measured. Adsorption of chitosan on mucin results in considerable compaction of the layer, and development of attractive forces detectable on separation. Friction between mucin-chitosan layers in 30 mM NaCl solution is high, with mu(eff) approximately 0.4. Adsorption of additional mucin to this layer results in no improvement with respect to lubrication as compared to the mucin-chitosan layer, and mu(eff) approximately 0.4 is observed. We argue that the layers containing both mucin and chitosan are not strictly layered but rather strongly entangled. As a result attractive interactions between oppositely charged moieties of sialic acid residues from mucin and amine groups from chitosan residing on the opposing surfaces contribute to the increased friction. The effects of SDS on normal and friction forces between combined mucin-chitosan layers were also investigated. The relation between surface interactions and friction properties is discussed.  相似文献   

16.
An amphoteric copolymer brush of methacrylic acid (MA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) was prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization using both a free chain transfer agent (n-butylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid) and a radical initiator (4,4'-azobis(4-cyanopentanoic acid)) covalently fixed to a glass substrate. An aqueous solution of the copolymer, Poly(MA-r-DMAEMA), which was simultaneously obtained in liquid phase, had a sufficiently small polydispersity in its molecular weight. The copolymer brush showed effective suppression of non-specific adsorption of bovine serum albumin and egg white lysozyme to the brush. In contrast, both negatively charged PolyMA and positively charged PolyDMAEMA brushes significantly adsorbed the proteins irrespective of their net charges. Upon ion beam irradiation, furthermore, a hollow space with a designed shape could be made on the glass substrate, and both HEK293 and HepG2 cells non-specifically adhered to the space, forming aggregates, while no adhesion to the non-treated area on the brush was observed. These results suggest that the amphoteric polymer brushes will be useful materials for biomedical applications.  相似文献   

17.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   

18.
Using a surface force balance, we have measured the normal and shear forces between mica surfaces across aqueous caesium salt solutions (CsNO(3) and CsCl) up to 100 mM concentrations. In contrast to all other alkali metal ions at these concentrations, we find no evidence of hydration repulsion between the mica surfaces on close approach: the surfaces appear to be largely neutralized by condensation of the Cs ions onto the charged lattice sites, and are attracted on approach into adhesive contact. The contact separation at adhesion indicates that the condensed Cs ions protrude by 0.3 +/- 0.2 nm from each surface, an observation supported both by the relatively weak adhesion energies between the surfaces, and the relatively weak frictional yield stress when they are made to slide past each other. These observations show directly that the hydration shells about the Cs(+) ions are removed as the ions condense into the charged surface lattice. This effect is attributed to the low energies-resulting from their large ionic radius-required for dehydration of these ions.  相似文献   

19.
High capacity, charge-selective protein uptake by polyelectrolyte brushes   总被引:2,自引:0,他引:2  
Surface plasmon resonance was used to measure binding of proteins from solution to poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes end-grafted from gold surfaces by atom transfer radical polymerization (ATRP). PDMAEMA brushes were prepared with a variety of grafting densities and degrees of polymerization. These brushes displayed charge selective protein uptake. The extent of uptake for net negatively charged bovine serum albumin (BSA) scaled linearly with the surface mass concentration of grafted PDMAEMA, regardless of grafting density. BSA was bound at a constant ratio of 120 DMAEMA monomer units per protein molecule for all brushes examined. The equivalent three-dimensional concentration of BSA bound in the brush (i.e., the bound BSA surface excess concentration divided by the brush thickness) decreased monotonically with decreasing grafting density. The concentration of BSA bound within brushes prepared at higher grafting densities was comparable with the aqueous protein solubility limit. BSA desorption from the brush required changes in solution pH and/or ionic strength to eliminate its net electrostatic attraction to PDMAEMA. Net positively charged lysozyme was completely rejected by the PDMAEMA brushes.  相似文献   

20.
Tapered copolymer brushes of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) were synthesized via surface-initiated atom transfer radical polymerization (ATRP) by gradual addition of HEMA to a reaction mixture that originally only had MMA as monomer. The copolymer brush grew linearly with polymerization time. The tapered copolymer brushes responded to selective solvent treatments. For the same tapered copolymer brush, pretreating the surface with methylene chloride made the surface more hydrophobic; pretreating the surface with methanol increased the surface hydrophilicity. This change in surface properties was reversible and considered to be caused by the solvent induced rearrangement of the polymer brushes, which is supported by atomic force microscopy images of the surface. Our work demonstrates that the properties of the tapered copolymer brush could be finely tuned by careful control of the composition profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号