首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于极短的激发态寿命, 钌(II)三联吡啶配合物对脱氧核糖核酸(DNA)的光损伤能力低下. 设计合成了三个钌(II)三联吡啶配合物[Ru(ttp)(tpy)]2+ (1), [Ru(ttp-COOH)(tpy)]2+ (2)和[Ru(ttp-COOH)(tpy-pyr)]2+ (3), 其中tpy为2,2':6',2"-三联吡啶, ttp为4′-(4-甲苯基)-2,2':6',2"-三联吡啶, ttp-COOH为4′-(4-羧基苯基)-2,2':6',2"-三联吡啶, tpy-pyr为4'-(1-芘基)-2,2':6',2"-三联吡啶. 比较了TiO2纳米颗粒对它们光损伤小牛胸腺DNA的影响. 发现TiO2纳米颗粒在空气和氩气条件下均可显著提高配合物3光损伤DNA的能力. TiO2纳米颗粒和配合物3间的光诱导电子转移作用及其该作用生成的钌(III)物种可能是促进配合物3对DNA光损伤的主要原因.  相似文献   

2.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

3.
The focus of this report is the synthesis and properties of two new analogues of ruthenium(ii) tris-bipyridine, a monomer and dimer. The complexes contain the ligand 6,6'-(ethan-1,2-diyl)bis-2,2'-bipyridine (O-bpy) which contains two bipyridine units bridged in the 6,6' positions by an ethylene bridge. Crystal structures of the two complexes formulated as [Ru(bpy)(O-bpy)](PF6)2 and [(Ru(bpy)2)2(O-bpy)](PF6)4 reveal structures of lower symmetry than D3 which affects the electronic properties of the complexes as substantiated by density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. The HOMO lies largely on the ruthenium center; the LUMO spreads its electron density over the bipyridine units, but not equally in the mixed O-bpy-bpy complexes. Calculated Vis/UV spectra using TDDFT methods agree with experimental spectra. The lowest lying triplet excited state for [Ru(bpy)(O-bpy)](PF6)2 is 3MC resulting in a low emission quantum yield and a large chloride ion photosubstitution quantum yield.  相似文献   

4.
A series of [{(terpy)(bpy)Ru}(μ‐O){Ru(bpy)(terpy)}]n+ ( [RuORu]n+ , terpy=2,2′;6′,2′′‐terpyridine, bpy=2,2′‐bipyridine) was systematically synthesized and characterized in three distinct redox states (n=3, 4, and 5 for RuII,III2 , RuIII,III2 , and RuIII,IV2 , respectively). The crystal structures of [RuORu]n+ (n=3, 4, 5) in all three redox states were successfully determined. X‐ray crystallography showed that the Ru? O distances and the Ru‐O‐Ru angles are mainly regulated by the oxidation states of the ruthenium centers. X‐ray crystallography and ESR spectra clearly revealed the detailed electronic structures of two mixed‐valence complexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+ , in which each unpaired electron is completely delocalized across the oxo‐bridged dinuclear core. These findings allow us to understand the systematic changes in structure and electronic state that accompany the changes in the redox state.  相似文献   

5.
The synthesis and characterization of Ru(II) terpyridine complexes derived from 4'-functionalized 2,2':6',2'-terpyridine ligands by a multi step procedure have been described. The complexes are redox-active, showing both metal-centred (oxidation) and ligand-centred (reduction) processes. The antibacterial and antifungal activity of the synthesized ruthenium(II) complexes [Ru(attpy)2](PF6)2 (attpy = 4'-(4-acryloyloxymethylphenyl)-2,2':6',2'-terpyridine); [Ru(mttpy)2](PF6)2 (mttpy = 4'-(4-methacryloyloxymethylphenyl)-2,2':6',2'- terpyridine); [Ru(mttpy)(MeOPhttpy)](PF6)2 (MeOPhttpy = 4'-(4-methoxyphenyl)-2,2':6',2'-terpyridine); and [Ru(mttpy)(ttpy)](PF6)2 (ttpy = 4'-(4-methylphenyl)-2,2':6',2'-terpyridine) were tested against four human pathogens (Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Escherichia coli) and five plant pathogens (Curvularia lunata, Fusarium oxysporum, Fusarium udum, Macrophomina phaseolina and Rhizoctonia solani) by the well diffusion method and MIC values of the complexes are reported. A biological study of the complexes indicated that the complexes [Ru(mttpy)2](PF6)2 and [Ru(mttpy)(MeOPhttpy)](PF6)2 exhibit very good activity against most of the test pathogens and their activity is better than those of some of the commercially available antibiotics like tetracycline and the fungicide carbendazim.  相似文献   

6.
The templated synthesis of organic macrocycles containing rings of up to 96 atoms and three 2,2′‐bipyridine (bpy) units is described. Starting with the bpy‐centred ligands 5,5′‐bis[3‐(1,4‐dioxahept‐6‐enylphenyl)]‐2,2′‐bipyridine and 5,5′‐bis[3‐(1,4,7‐trioxadec‐9‐enylphenyl)]‐2,2′‐bipyridine, we have applied Grubbs’ methodology to couple the terminal alkene units of the coordinated ligands in [FeL3]2+ complexes. Hydrogenation and demetallation of the iron(II)‐containing macrocyclic complexes results in the isolation of large organic macrocycles. The latter bind {Ru(bpy)2} units to give macrocyclic complexes with exocyclic ruthenium(II)‐containing domains. The complex [Ru(bpy)2(L)]2+ (isolated as the hexafluorophosphate salt), in which L=5,5′‐bis[3‐(1,4,7,10‐tetraoxatridec‐12‐enylphenyl)]‐2,2′‐bipyridine, undergoes intramolecular ring‐closing metathesis to yield a macrocycle which retains the exocyclic {Ru(bpy)2} unit. The poly(ethyleneoxy) domains in the latter macrocycle readily scavenge sodium ions, as proven by single‐crystal X‐ray diffraction and atomic absorption spectroscopy data for the bulk sample. In addition to the new compounds, a series of model complexes have been fully characterized, and representative single‐crystal X‐ray structural data are presented for iron(II) and ruthenium(II) acyclic and macrocyclic species.  相似文献   

7.
A pi-extended, redox-active bridging ligand 4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[2,3-a:3',2'-c]phenazine (L) was prepared via direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with 4,7-phenanthroline-5,6-dione. Reactions of L with [Ru(bpy)(2)Cl(2)] afforded its stable mono- and dinuclear ruthenium(II) complexes 1 and 2. They have been fully characterized, and their photophysical and electrochemical properties are reported together with those of [Ru(bpy)(2)(ppb)](2+) and [Ru(bpy)(2)(mu-ppb)Ru(bpy)(2)](4+) (ppb = dipyrido[2,3-a:3',2'-c]phenazine) for comparison. In all cases, the first excited state corresponds to an intramolecular TTF --> ppb charge-transfer state. Both ruthenium(II) complexes show two strong and well-separated metal-to-ligand charge-transfer (MLCT) absorption bands, whereas the (3)MLCT luminescence is strongly quenched via electron transfer from the TTF subunit. Clearly, the transient absorption spectra illustrate the role of the TTF fragment as an electron donor, which induces a triplet intraligand charge-transfer state ((3)ILCT) with lifetimes of approximately 200 and 50 ns for mono- and dinuclear ruthenium(II) complexes, respectively.  相似文献   

8.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

9.
10.
The photophysical properties of a series of prepared ruthenium tris(bipyridine) complexes, covalently linked to aromatic species, of type [Ru(bpy)(2)-(4-methyl-4'-(arylaminocarbonyl)-2,2'-bipyridine)](2+) ([Ru(bpy)(2)(mbpy-L)](2+), where bpy = 2,2'-bipyridine; mbpy = 4-methyl-4'-carbonyl-2,2'-bipyridine; and L = 2-aminonaphthyl (naph), 9-aminoanthryl (anth), 1-aminopyrenyl (pyr), or 9-aminoacridinyl (acrd)) were studied by electronic absorption spectroscopy and steady state and time resolved luminescence spectroscopies. The absorption spectra of the MLCT electronic transition of the complexes are similar, which is in agreement with a practically constant redox potential of Ru(III/II) close to 1.28 V versus Ag/AgCl. However, the luminescence spectra of the new complexes are red shifted compared to Ru(bpy)(3)(2+), and this effect is ascribed to solvation and inductive effects of the amide group which enhance the symmetry breakdown among the three bipyridyl ligands. The energy stabilization of the (3)MLCT state is in the range 2.1-8.4 kJ/mol. The triplet-triplet energy transfer between the Ru complex and the aromatic species linked by an amide spacer is a slow process with rate constants of 2.6 x 10(4), 3.6 x 10(4), and 4.9 x 10(4) s(-)(1) for anthracene, acridine, and pyrene as acceptors in methanol, respectively. The energy transfer rate constant increases with decreasing polarity of the solvent. In dichloromethane, the rate constants for anthracene, acridine, and pyrene acceptors are 2.6 x 10(5), 1.5 x 10(5), and 2.9 x 10(5) s(-)(1), respectively. The low efficiency of energy transfer is due to the small difference in triplet energy between donor and acceptor species, weak electronic coupling, and unfavorable Franck-Condon factors, despite the short separation distance between donor and acceptor species in an amide bridge.  相似文献   

11.
The mixed-ligand polypyridine ruthenium(II) complexes, [Ru(bpy)(2)(dmeb)](2+)(PF(6)(-))(2) (Ru(dmeb)(2+)) and [Ru(bpy)(2)(dbeb)](2+)(PF(6)(-))(2) (Ru(dbeb)(2+)), where bpy is bipyridine, dmeb is 4,4'-dimethyl ester-2,2'-bipyridine, and dbeb is 4,4'-dibutyl ester-2,2'-bipyridine, are synthesized and characterized, and their spectroscopic, electrochemical, and electroluminescent properties are reported. Both Ru(II) complexes showed strong emission from the triplet metal-to-ligand charge-transfer excited state, red-shifted emission spectra (lambda(max) = 642 nm), and good solubility in organic solvents compared to the frequently used tris(bipyridine) Ru(II) complexes. The electrochemical measurements for these Ru complexes showed reversible and quasi-reversible redox processes, implying a potential improvement in the stability of the electroluminescent device. The electrophosphorescent devices were fabricated by doping them in a polymer host using a simple solution spin-coating technique. For a single-layer device with the 1.0 wt % Ru(dbeb)(2+)-doped polymer blends of poly(vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) as the emitting layer and with the metal Ba as the cathode, an external quantum efficiency of 3.0%, a luminous efficiency of 2.4 cd/A, and a maximum brightness of 935 cd/m(2) are reached with an electroluminescence (EL) spectral peak at 640 nm and Commission Internationale de L'Eclairage chromaticity coordinates of x = 0.64 and y = 0.33, which were comparable with standard red color.  相似文献   

12.
The bichromophoric system Ru-Ru(C)-PI ([(bpy)3Ru-Ph-Ru(dpb)(Metpy-PI)][PF6]3, where bpy is 2,2'-bipyridine, Hdpb is 1,3-di(2-pyridyl)-benzene, Metpy is 4'-methyl-2,2':6',2' '-terpyridine and PI is pyromellitimide) containing two Ru(II) polypyridyl chromophores with a N6 and a N5C ligand set, respectively, was synthesized and characterized. Its photophysical properties were investigated and compared to those of the monochromophoric cyclometalated complexes Ru(C)-PI ([Ru(dpb)(Metpy-PI)][PF6]), Ru(C)-phi-PI ([Ru(dpb)(ttpy-PI)][PF6], ttpy is 4'-p-tolyl-2,2':6',2' '-terpyridine), Ru(C)-phi ([Ru(dpb)(ttpy)][PF6]), and Ru(C) ([Ru(dpb)(Metpy)][PF6]). Excitation of the Ru(C) unit in the dyads leads to oxidative quenching, forming the Ru(C)(III)-phi-PI*- and Ru(C)(III)-Pl.- charge-separated (CS) states with k(f)(ET) = 7.7 x 10(7) s(-1) (CH3CN, 298 K) in the tolyl-linked Ru(C)-phi-PI and k(f)(ET) = 4.4 x 10(9) s(-1) (CH2Cl2, 298 K) in the methylene-linked Ru(C)-PI. In the Ru-Ru(C)-PI triad, excitation of the Ru(C) chromophore leads to dynamics similar to those in the Ru(C)-PI dyad, generating the Ru(II)-Ru(C)(III)-PI*- CS state, whereas excitation of the Ru unit results in an initial energy transfer (k(EnT) = 4.7 x 10(11) s(-1)) to the cyclometalated Ru(C) unit. Subsequent electron transfer to the PI acceptor results in the formation of the same Ru(II)-Ru(C)(III)-PI*- CS state with k(f)(ET) = 5.6 x 10(9) s(-1) that undergoes rapid recombination with k(b)(ET) = 1 x 10(10) s(-1) (CH2Cl2, 298 K). The fate of the Ru(II)-Ru(C)(III)-PI*- CS state upon a second photoexcitation was studied by pump-pump-probe experiments in an attempt to detect the fully charge-separated Ru(III)-Ru(C)(II)-PI*- state.  相似文献   

13.
Fullerene coordination ligands bearing one bipyridine or terpyridine unit were synthesized, and their coordination to ruthenium(II) formed linear rod-like donor-acceptor systems. Steady-state fluorescence of [Ru(bpy)(2)(bpy-C(60))](2+) showed a rapid solvent-dependent, intramolecular quenching of the ruthenium(II) MLCT excited state. Time-resolved flash photolysis in CH(3)CN revealed characteristic transient absorption changes that have been ascribed to the formation of the C(60) triplet state, suggesting that photoexcitation of [Ru(bpy)(2)(bpy-C(60))](2+) results in a rapid intramolecular transduction of triplet excited state energy. The electrochemical studies on both [Ru(bpy)(2)(bpy-C(60))](2+) and [Ru(tpy)(tpy-C(60))](2+) indicated electronic coupling between the metal center and the fullerene core.  相似文献   

14.
The ruthenium bis(bipyridine) complexes cis-[Ru(bpy)(2)Im(OH(2))](2+), cis-[Ru(bpy)(2)(Im)(2)](2+), cis-[Ru(bpy)(2)(N-Im)(2)](2+), cis-[Ru(dmbpy)(2)Im(OH(2))](2+), cis-[Ru(dmbpy)(2)(N-Im)(OH(2))](2+)(bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, Im = imidazole, N-Im = N-methylimidazole), have been synthesized under ambient conditions in aqueous solution (pH 7). Their electrochemical and spectroscopic properties, absorption, emission, and lifetimes were determined and compared. The substitution kinetics of the cis-[Ru(bpy)(2)Im(OH(2))](2+) complexes show slower rates and have lower affinities for imidazole ligands than the corresponding cis-[Ru(NH(3))(4)Im(OH(2))](2+) complexes. The crystal structures of the monoclinic cis-[Ru(bpy)(2)(Im)(2)](BF(4))(2), space group = P2(1)/a, Z = 4, a = 11.344(1) ?, b = 17.499(3) ?, c = 15.114(3) ?, and beta = 100.17(1) degrees, and triclinic cis-[Ru(bpy)(2)(N-Im)(H(2)O)](CF(3)COO)(2).H(2)O, space group = P&onemacr;, Z = 2, a = 10.432(4) ?, b = 11.995(3) ?, c = 13.912(5) ?, alpha = 87.03(3) degrees, beta = 70.28(3) degrees, and gamma = 71.57(2) degrees, complexes show that these molecules crystallize as complexes of octahedral Ru(II) to two bidentate bipyridine ligands with two imidazole ligands or a water and an N-methylimidazole ligand cis to each other. The importance of these molecules is associated with their frequent use in the modification of proteins at histidine residues and in comparisons of the modified protein derivatives with these small molecule analogs.  相似文献   

15.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

16.
Based on data from more than 40 crystal structures of metal complexes with azo-based bridging ligands (2,2'-azobispyridine, 2,2'-azobis(5-chloropyrimidine), azodicarbonyl derivatives), a correlation between the N?N bond lengths (d(NN) ) and the oxidation state of the ligand (neutral, neutral/back-donating, radical-anionic, dianionic) was derived. This correlation was applied to the analysis of four ruthenium compounds of 2,2'-azobispyridine (abpy), that is, the new asymmetrical rac-[(acac)(2) Ru1(μ-abpy)Ru2(bpy)(2) ](ClO(4) )(2) ([1](ClO(4) )(2) ), [Ru(acac)(2) (abpy)] (2), [Ru(bpy)(2) (abpy)](ClO(4) )(2) ([3](ClO(4) )(2) ), and meso-[(bpy)(2) Ru(μ-abpy)Ru(bpy)(2) ](ClO(4) )(3) ([4](ClO(4) )(3) ; acac(-) =2,4-pentanedionato, bpy=2,2'-bipyridine). In agreement with DFT calculations, both mononuclear species 2 and 3(2+) can be described as ruthenium(II) complexes of unreduced abpy(0) , with 1.295(5)相似文献   

17.
New hybrid complexes of polypyridyl ruthenium and pyridylporphyrins have been prepared by the coordination of pyridyl nitrogens to the ruthenium centers. A 1:4 hybrid complex, [{Ru(bpy)(trpy)}4(mu4-H2Py4P)]8+ ([1]8+) (bpy = 2,2'-bipyridine; trpy = 2,2':6',2"-terpyridine; H2Py4P = 5,10,15,20-tetra(4-pyridyl)porphyrin), has been characterized by the single-crystal X-ray diffraction method. A 1:1 complex, [{Ru(bpy)(trpy)}(H2PyT3P)]2+ ([2]2+) (H2PyT3P = 5-(4-pyridyl)tritolylporphyrin) has also been prepared. The Soret band of the porphyrin ring shifts to longer wavelength with some broadening, the extent of the shift being larger for [1]8+. Cyclic voltammograms of the two complexes show simple overlap of the component redox waves. The complexes are weakly emissive at room temperature, which becomes stronger at lower temperatures. While [1]8+ at >140 K and [2]2+ at 77-280 K show only porphyrin fluorescence, [1]8+ at <140 K shows ruthenium and porphyrin phosphorescence, in addition to the porphyrin fluorescence.  相似文献   

18.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

19.
Nanocrystalline thin films of TiO2 cast on an optically transparent indium tin oxide glass were sensitized with ruthenium homo- and heterobinuclear complexes, [LL'Ru(BL)RuLL']n+ (n = 2, 3), where L and L' are 4,4'-dicarboxy-2,2'-bipyridine (dcb) and/or 2,2'-bipyridine (bpy) and BL is a rigid and linear heteroaromatic entity (tetrapyrido[3,2-a:2',3'-c:3",2"-h:2'",3'"-j]phenazine (tpphz) or 1,4-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene (bfimbz)). The photophysical behavior of the RuII-RuII diads in solution indicated the occurrence of intercomponent energy transfer from the upper-lying Ru --> bpy charge-transfer (CT) excited state of the Ru(bpy)(2) moiety to the lower-lying Ru --> dcb CT excited state of the Ru(bpy)(dcb) (or Ru(dcb)(2)) subunit in the heterobinuclear complexes. These sensitizer diads adsorbed on nanostructured TiO2 surfaces in a perpendicular or parallel attachment mode. Adsorption was through the dcb ligands on one or both chromophoric subunits. The behavior of the adsorbed species was studied by nanosecond time-resolved transient absorption and emission spectroscopy, as well as by photocurrent measurements. In the TiO2-adsorbed samples where BL was bfimbz, the electron injection kinetics was very fast and could not be resolved because an electron is promoted from the metal center to the dcb ligand directly linked to the semiconductor. In the TiO2-adsorbed samples where BL was tpphz, for which, in the excited state, a BL localization of the lowest-lying metal-to-ligand charge transfer (MLCT) is observed, slower injection rates (9.5 x 10(7) s(-1) in [(bpy)(2)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2 and 5.5 x 10(7) s(-1) in [(bpy)(dcb)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2) were obtained. Among the systems, the heterotriad assembly [(bpy)(2)Ru(bfimbz)Ru(bpy)(dcb(2-))](2+)/TiO2 gave the best photovoltaic performance. In the first case, this was attributed to a fast electron injection initiated from a dcb-localized MLCT; in the second case, this is attributed to improved molecular orientation on the surface, which was due to rigidity and, at the same time, linearity of the heterotriad system, resulting in a slower charge recombination between the injected electron and the hole.  相似文献   

20.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(15):4044-4050
Supramolecular trimetallic complexes [((tpy)RuCl(BL))(2)RhCl(2)](3+) where tpy = 2,2':6',2' '-terpyridine and BL = dpp or bpm [dpp = 2,3-bis(2-pyridyl)pyrazine and bpm = 2,2'-bipyrimidine] have been synthesized and characterized. The mixed-metal complexes couple a reactive rhodium(III) center to two ruthenium(II) light absorbers to form a light absorber-electron collector-light absorber triad. The variation of the bridging (dpp and bpm) and terminal (tpy in lieu of bpy) ligands has some profound effects on the properties of these complexes, and they are remarkably different from the previously reported [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+) system. The electrochemical data for both title trimetallics consist of overlapping Ru(III/II) couples for both terminal metals at 1.12 V versus the Ag/AgCl reference electrode. Cathodically an irreversible Rh(III/I) reduction followed by bridging ligand reductions is seen. This is indicative of highest occupied molecular orbitals (HOMO) localized on the terminal ruthenium metal centers and a lowest unoccupied molecular orbital (LUMO) residing on the rhodium. This rhodium-based LUMO is in contrast to the bpy analogue [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+), which has a bpm(pi) localized LUMO. This orbital inversion by terminal ligand variation illustrates the similar energy of these Rh(dsigma) and bpm(pi) orbitals within this structural motif. Both title trimetallics possess broad, low-energy Ru --> BL charge transfer absorbances at 540 nm (dpp) and 656 nm (bpm). A comparison of the spectroscopic, electrochemical, and spectroelectrochemical properties of these trimetallic complexes is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号