首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.  相似文献   

2.
A transparent Er3+–Tm3+–Yb3+ tri-doped oxyfluoride glass ceramics containing LiYF4 nanocrystals were prepared. Under 980 nm laser diode (LD) pumping, intensive red, green and blue upconversion (UC) was obtained. The blue, green, and red UC radiations correspond to the transitions 1G43H6 of Tm3+, 2H11/2/4S3/24I15/2, and 4F9/24I15/2 of Er3+ ions, respectively. This is similar to that in Tm3+–Yb3+ and/or Er3+–Yb3+ co-doped glass ceramics. However, the blue UC radiations of the Er3+–Yb3+ co-doped glass ceramics is two-photon process due to cooperative energy transfer. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

3.
The Yb3+/Tm3+ co-doped GdF3 and NaGdF4 samples were synthesized through a combination method of a co-precipitation and an argon atmosphere annealing procedures. X-ray diffraction analysis indicated that the Yb3+/Tm3+ co-doped GdF3 sample crystallized well and was orthorhombic phase, and the Yb3+/Tm3+ co-doped NaGdF4 sample was hexagonal phase. With a 980-nm semiconductor continuous wave laser diode as the excitation source, the up-conversion emission spectra of the two samples in the wavelength range of 240-510 nm were recorded. In the up-conversion emissions of the samples, Yb3+ transferred energies to Tm3+ resulting in their ultraviolet, violet, and blue up-conversion emissions. And, Tm3+ simultaneously transferred energies to Gd3+, which finally resulted in ultraviolet up-conversion emissions of Gd3+. The study on the excitation power dependence of up-conversion fluorescence intensity indicated that there were multi-photon (three-, four-, five-, and six-) processes in the up-conversion emissions of the samples. And the up-conversion emissions of Gd3+ and Tm3+ in the Yb3+/Tm3+ co-doped GdF3 and NaGdF4 samples were compared studied, too.  相似文献   

4.
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.  相似文献   

5.
用高温熔融法制备了Tm3+/Ho3+/Yb3+共掺碲酸盐玻璃(TeO2-ZnO-La2O3)样品,测试了玻璃样品的吸收光谱和上转换发光光谱,分析了上转换发光机理.结果发现:在975 nm波长激光二极管(LD)激励下,制备的碲酸盐玻璃样品可以观察到强烈的红光(662 nm)、绿光(546 nm)和蓝光(480 nm)三基色上转换发光,红光对应于Tm3+离子 关键词: 碲酸盐玻璃 上转换发光 白光 3+/Ho3+/Yb3+共掺')" href="#">Tm3+/Ho3+/Yb3+共掺  相似文献   

6.
The preparation and upconversion luminescence properties of the Yb3+ and Tb3+ co-doped glass ceramics containing SrF2 nanocrystals were investigated. The formation of SrF2 nanocrystals was confirmed by X-ray diffraction and transmission electron microscopy. Both microstructural and spectral analysis indicated that the Yb3+ and Tb3+ ions were enriched in the precipitated SrF2 nanocrystals, which provide much lower phonon vibration energy than the glass matrix. Due to the efficient cooperative sensitization from Yb3+ to Tb3+ and the relatively low maximum phonon energy of SrF2 nanocrystals, the Yb3+ and Tb3+ co-doped glass ceramics exhibited intense upconversion luminescence, including ultraviolet emission at 382 nm.  相似文献   

7.
按摩尔百分比制备了组分为30SiO2-(20-x-y)Al2O3-40PbF2-10CdF2-xTm2O3-yYb2O3的两组Tm3+/Yb3+共掺杂氟氧硅铝酸盐上转换蓝色发光玻璃陶瓷材料,测量了其在980nm激 关键词: 玻璃陶瓷 上转换发光 3+/Yb3+掺杂')" href="#">Tm3+/Yb3+掺杂 掺杂浓度  相似文献   

8.
Low phonon energy Tm3+/Ho3+/Yb3+ triply doped bismuth tellurite glasses exhibiting multicolor upconversion fluorescences have been fabricated and characterized. The multicolor fluorescence composed of three primary colors green, red and blue upconversion emissions from Ho3+ and Tm3+ has been investigated. By adjusting the excitation power, the fluorescence colors can be tuned from multicolor to white color, and the dependence of color tunability on pump power has been presented in the CIE 1931 chromaticity diagram. With the increase in pumping power, the color coordinates move along the down-left direction and hit the equal energy point. The upconversion and color tunability via changing the pump power of infrared excitation in Tm3+/Ho3+/Yb3+ triply doped bismuth tellurite glasses will lead to new breakthrough in the field of three-dimensional solid-state displays and white-light emitting devices.  相似文献   

9.
徐伟  李成仁  曹保胜  董斌 《中国物理 B》2010,19(12):127804-127804
Yb3+:Er3+co-doped oxy-fluoride ceramics glass has been prepared.The mechanism of up-conversion emissions about Er3+was discussed,and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated.The results show that the sensitivity of this sample reaches its maximum value,about 0.0047 K 1,when the temperature is 383 K,indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.  相似文献   

10.
In this study, the principal role of Al2O3 on the features of the photoluminescence spectra of Tm3+ ion and upconversion phenomenon in Tm3+ and Er3+ codoped CaF2−Al2O3−P2O5−SiO2 glass system has been investigated. The concentration of Al2O3 is varied from 2 to 10 mol% while that of Er3+ and Tm3+ is fixed. IR and Raman spectral studies have indicated that there is a gradual increase in the degree of disorder in the glass network with increase in the concentration of Al2O3 up to 6.0 mol%. This is attributed to the presence of Al3+ ions in octahedral positions in larger proportions. When the glasses are doped with Tm3+ ions, the blue and red emissions were observed, whereas in Er3+ doped glasses blue, green and red emissions were observed. When the glasses are codoped with Tm3+ and Er3+ ions and excited at 790 nm, all the three emission lines were observed to be reinforced, especially in the glasses mixed with 6.0 mol% of Al2O3. The IR emission band detected at about 1.8 μm due to 3F43H6 transition of Tm3+ ions is also observed to be strengthened due to codoping. The reasons for enhancement in the intensity of various emission bands due to codoping have been identified and discussed with the help of rate equations for various emission transitions.  相似文献   

11.
Er3+ doped and Yb3+/Er3+ co-doped Y4Al2O9 phosphors are prepared by the sol-gel method. The effect of dopant concentration on the structure and up-conversion properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to monoclinic. Under 980 nm excitation, the green and red up-conversion emissions are observed and the emission intensities depended on the Yb3+ ion concentration. The green up-conversion emissions decrease with the increase of Yb3+ concentration, while red emission increases as Yb3+ concentration increases from 0 to 8 at% and then decreases at high Yb3+ concentration. The mechanisms of the up-conversion emissions are discussed and results shows that in Er3+ and Yb3+/Er3+ co-doped system, cross-relaxation (CR) and energy transfer (ET) processes play an important role for the green and red up-conversion emissions.  相似文献   

12.
Cathodoluminescence (CL) properties of SiO2 powders activated with thulium (Tm3+) and holmium (Ho3+) ions prepared by a sol–gel process were investigated. Different molar concentrations of Tm3+ co-doped with Ho3+ were studied. The 460 nm peak was monitored and the influence of the beam energy and concentration of Tm3+ ions on the emission properties of this peak was also monitored. The peculiar behavior whereby the 460 nm emission peak decreases and the increase in the 705 and 865 nm peaks with the increase in the concentration of Tm3+ ions is reported. The relationship between the accelerating beam voltage and the CL intensity of the blue emission peak (460 nm peak) is established. Morphology, particle size and optical properties were characterized with Scanning electron microscopy (SEM), UV/VIS Lambda 750 S spectrometer and Auger electron spectroscopy (AES) equipped with Ocean Optics S2000, respectively.  相似文献   

13.
报道了Tm3+/Ho3+共掺的镓铋酸盐玻璃14Ga2O3-25Bi2O3-20GeO2-31PbO-10PbF2玻璃1.47μm(S波段)发光和能量传递特征,应用Judd-Ofelt理论计算了玻璃的强度参数Ωt(t=2,4,6),自发辐射概率A、荧光分支比β,荧光辐射寿命τ等各项光谱参数以及有效荧光线宽Δλeff和峰值发射截面σpeake.通过测量荧光光谱和荧光寿命研究了Ho3+离子掺杂浓度对Tm3+离子1.47μm波段发光性能的影响,分析了Tm3+和Ho3+之间的能量传递过程.结果表明一定浓度内Ho3+的共掺迅速降低了Tm3+3F4能级的粒子数,而对3H4能级粒子数影响不大,从而降低了3F43H4能级间布居数反转的难度,极大地提高了1.47μm发光效率.研究表明镓铋酸盐玻璃是适用于S波段光纤放大器的一种潜在基质材料,而掺杂一定浓度的Ho3+离子有利于提高Tm3+离子在1.47μm波段的发光效率. 关键词: 重金属氧化物玻璃 光谱性质 3+/Ho3+离子')" href="#">Tm3+/Ho3+离子 能量传递  相似文献   

14.
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.  相似文献   

15.
The up-conversion emission properties of Yb3+-Ho3+ co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks IRed/IGreen increased with increasing B2O3 concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb3+-Ho3+ co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.  相似文献   

16.
In this paper, the core-shell structured SiO2@YVO4:Yb3+,Er3+ microspheres have been successfully prepared via a facile sol-gel process followed by a heat treatment. X-ray diffraction, field emission scanning electron microscopy, energy disperse X-ray spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and photoluminescence spectra were used to characterize the samples. The results reveal that the SiO2 spheres have been successfully coated by YVO4:Yb3+,Er3+ phosphors to form core-shell structures and the size of obtained microspheres has a uniform distribution. Additionally, the samples exhibit bright green luminescence under the excitation of a 980 nm laser diode. The photoluminescence intensity increases with the number of coatings. These core-shell structured SiO2@YVO4:Yb3+,Er3+ microspheres may have great potential in the fields of infrared detection and display devices.  相似文献   

17.
The up-conversion (UC) and near infrared (NIR) luminescence of Er3+/Yb3+ co-doped phosphate glass are investigated. In the UC emission range, the 523 nm, 546 nm green emissions and the 659 nm red emission are observed. With the increasing pump power, the intensity ratios of I523/I659, I546/I659 and I523/I546 increase gradually. The phenomenon is reasonably interpreted by theoretical analysis based on steady state rate equations. The emission cross section of the infrared emission at 1546 nm is larger (about 6.7 × 10− 21 cm2), which is suitable for making fiber amplifier.  相似文献   

18.
RE/Yb co-doped Y2O3 transparent ceramics (RE=Er, Ho, Pr, Tm) were fabricated and characterized from the point of up-conversion luminescence. All the samples exhibit high transparence not only in near-infrared band (NIR) band but also in visible region, which ensures the output of the up-conversion luminescence. Under 980 nm excitation, green and red emissions were observed in Er, Yb:Y2O3 transparent ceramic, while green emission was detected in Ho, Yb and Pr, Yb co-doped Y2O3 transparent ceramics. In Tm, Yb co-doped Y2O3 ceramic, very intense blue up-conversion luminescence was detected. The dependence of up-conversion emission intensity on the pumping power was measured for each RE/Yb co-doped Y2O3 transparent ceramic, and the up-conversion mechanism was discussed in detail. Meanwhile, the energy transfer efficiency was calculated.  相似文献   

19.
New near-infrared luminescent, monoclinic CaAl2O4:Er3+ phosphor was prepared by using the combustion route at furnace temperatures as low as 500 °C in a few minutes. Combustion synthesized phosphor has been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping studies. The luminescence spectra of Er3+-doped calcium aluminate were studied at UV (380 nm), vis (488 nm) and IR (980 nm) excitation. Upon UV and vis excitation, the CaAl2O4:Er3+ phosphor exhibits emission bands at ~523 nm and at ~547 nm, corresponding to transitions from the 2H11/2 and 4S3/2 erbium levels to the 4I15/2 ground state. A strong luminescence at 1.55 μm in the infrared (IR) region due to 4I13/24I15/2 transition has been observed in CaAl2O4:Er3+ phosphor upon 980 nm CW pumping. In the spectrum of IR-excited up-conversion luminescence, green (~523 and ~547 nm) and red (662 nm) luminescence bands were present, the latter associated with the 4F9/24I15/2 transitions of Er3+ ions. Both excited state absorption and energy transfer may be proposed as processes responsible for the population of the 4S3/2 and 4F9/2 erbium levels upon IR excitation. The mechanisms responsible for the up-conversion luminescence are discussed.  相似文献   

20.
Novel Ba2ErF7 and Yb3+-doped Ba2ErF7 powders were synthesized by a coprecipitation method. In Ba2ErF7 sample, abundant upconverted emission bands from violet to infrared region are observed under 980 nm excitation, whereas only green and red emissions are observed under 812 nm excitation. Under the two excitations, the luminescence decay curves of the green and red emissions are measured and the quenching behaviors of Yb3+ doping are also explored. It is found that a suitable Yb3+ concentration can efficiently enhance the intensity ratio of the blue and violet emissions to the green and red ones, which may be due to the competition between the energy transfer process from Er3+ to Yb3+ and the sensitizing process from Yb3+ to Er3+ in Ba2ErF7:Yb3+. This indicates that the Yb3+-doped Ba2ErF7 might be a good candidate for blue and violet upconversion phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号