首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of crystal polymorphism is a long-standing issue in solid-state chemistry, which has many practical implications for a variety of commercial applications. At least four different crystalline forms of 1,3-bis(m-nitrophenyl) urea (MNPU), a classic molecular crystal system, are known to crystallize from solution in various concomitant combinations. Herein we demonstrate that the introduction of gold-thiol self-assembled monolayers (SAMs) of substituted 4'-X-mercaptobiphenyls (X = H, I, and Br) into the crystallization solution can serve as an effective means to selectively template the nucleation and growth of alpha-, beta-, and gamma-MNPU phases, respectively. Polymorph control in the presence of SAM surfaces persists under a variety of solution conditions and consistently results in crystalline materials with high phase purity. The observed selectivity is rationalized on the basis of long-range two-dimensional geometric lattice matching and local complementary chemical interactions at the SAM/crystal interfaces.  相似文献   

2.
This work describes a method for patterning a gold substrate with multiple, aligned self-assembled monolayers (SAMs) using light at different wavelengths. It describes the synthesis and characterization of an alkanethiolate SAM that is photosensitive to light at both 220 and 365 nm. A photomask acts as an area-selective filter for light at 220 and 365 nm, and a single set of exposures at these two wavelengths through one photomask, without steps of alignment between the exposures, can produce three aligned SAMs on one gold substrate. We demonstrate the versatility of this method of photopatterning by modifying individual aligned SAMs chemically to produce surfaces having different properties. We characterize the modified SAMs using immunolabeling, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, and surface plasmon resonance spectroscopy. We also describe the patterning of two aligned SAMs that resist the adsorption of proteins and a third region that does not resist the adsorption of proteins. The ability to produce multiple, aligned patterns of SAMs in a single step, without alignment of photomasks in separate steps, increases the versatility of SAMs for studying a range of physical phenomena.  相似文献   

3.
We introduce a new approach to pattern conducting polymers by combining oppositely charged conducting polymers on charged self-assembled monolayers (SAMs). The polymer resist pattern behaves as a physical barrier, preventing the formation of SAMs. The patterning processes were carried out using commercially available conducting polymers: a negatively charged PEDOT/PSS (poly(3,4-ethylene-dioxythiophene)/poly(4-stylenesulphonic acid)) and a positively charged polypyrrole (PPy). A bifunctional NH 2 (positively charged) or COOH (negatively charged) terminated alkane thiol or silane was directly self-assembled on a substrate (Au or SiO 2). A suspension of the conducting polymers (PEDOT/PSS and PPy) was then spin-coated on the top surface of the SAMs and allowed to adsorb on the oppositely charged SAMs via an electrostatic driving force. After lift-off of the polymer resist, i.e., poly(methyl methacrylate, PMMA), using acetone, the conducting polymers remained on the charged SAMs surface. Optical microscopy, Auger electron spectroscopy, and atomic force microscopy reveal that the prepared nanolines have low line edge roughness and high line width resolution. Thus, conducting polymer patterns with high resolution could be produced by simply employing charged bifunctional SAMs. It is anticipated that this versatile new method can be applied to device fabrication processes of various nano- and microelectronics.  相似文献   

4.
This work demonstrates a method for inducing site-specific nucleation and subsequent growth of large oriented organic semiconductor single crystals using micropatterned self-assembled monolayers (SAMs). We demonstrate growth of oriented, patterned, and large organic semiconductor single crystals for potential use in organic electronic devices. The control over multiple parameters in a single system has not yet been reported. The ability to control various aspects of crystal growth in one system provides a powerful technique for the bottom-up fabrication of organic single-crystal semiconductor devices.  相似文献   

5.
Periodic graphene nanostructures are fabricated via patterning graphene through the self-assembled monolayers of monodisperse colloidal microspheres. The resulting structures exhibit promising electronic properties featuring high conductivities and ON-OFF ratios up to 10. The apparent advantages of the presented method are the possibilities of fabricating periodic graphene nanostructures with different periodicities, ranging from ~100 nm to several μm, and also varying the periodicity and the neck width independently. The use of the presented method yields graphene nanostructures with variable electronic properties.  相似文献   

6.
Nanoscale patterns of modified oligonucleotides are produced on octadecyltrimethoxysilane self-assembled monolayers at a silicon surface by electron beam lithography. DNA structures with feature sizes of the order of 250 nm were detected by epi-fluorescence microscopy.  相似文献   

7.
The interaction between DNA immobilized on surface and oligonucleotides at the interface is important in detection and diagnostic processes. However, it is difficult to immobilize DNA with maintaining its activity and to realize an efficient hybridization in previous methods. Here, to establish a novel DNA-functionalized surface, the DNA self-assembled monolayer (SAM) was constructed on a gold substrate using thiolated DNA composed of double-stranded (ds) and single-stranded (ss) portion. The DNA SAM was characterized by surface plasmon resonance (SPR), XPS. The hybridization of ss portion of DNA was attempted using the SAM, and in situ monitored by SPR. XPS measurement indicated that the thiolated DNA could form a stable monolayer on a gold substrate through sulfur–gold interaction. SPR measurement implied that the long axis of the DNA standing on the substrate. These results indicated formation of the DNA SAM on the substrate. Hybridization of target DNA containing a complementary sequence for the probe portion was observed by SPR. Moreover, one mismatch of oligonucleotide could be distinguished using the DNA SAM. The SPR result indicates that hybridization of target DNA and probe DNA on the DNA SAM occurs on the DNA SAM.  相似文献   

8.
A cathodic-anodic biway photoelectronic device has been successfully constructed using a self-assembled monolayer (SAM). The SAM consists of two kinds of photofunctional thiol derivatives, a ruthenium complex-viologen linked compound (RuVS) and a phthalocyanine derivative (PcS), on a gold electrode. Structural characterization of the SAM has been carried out by absorption spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Photocurrent responses were measured in the presence of methyl viologen (MV2+) and oxygen as electron acceptors and triethanolamine (TEOA) as a sacrificial reagent. For the SAM of RuVS alone, intramolecular electron transfer (ET) was superior to intermolecular ET, resulting in anodic photocurrents even in the presence of MV2+ and oxygen at 0 V vs Ag/AgCl. On the contrary, only cathodic photocurrents were observed at 0 V for the SAM of PcS alone. Photocurrents from the mixed SAM of RuVS and PcS were roughly the sum of individual photocurrents from RuVS and PcS. In fact, photocurrents from the mixed SAM of RuVS and PcS were observed in the anodic direction below approximately 550 nm, and in the cathodic direction above approximately 550 nm at 0 V vs Ag/AgCl. In the case of the mixed SAM of RuS (ruthenium complex disulfide) and PcS, only cathodic photocurrents were observed at 0 V vs Ag/AgCl, due to the lack of an intramolecular ET pathway. The results indicate that in the mixed SAM of RuVS and PcS both dyes can individually function for opposite photocurrent generation. We have also applied the mixed SAM as a photoelectronic logic device by using two LEDs (470 and 640 nm). The system clearly operated as an XOR logic device.  相似文献   

9.
Miravet JF  Escuder B 《Organic letters》2005,7(22):4791-4794
[reaction: see text] An organogel bearing reactive groups has been used as a platform for the gel-phase synthesis of more sophisticated materials. The results show that reactions take place on the gel fibers and that supramolecular aggregation modifies the product distribution in cases where several compounds can be obtained.  相似文献   

10.
A nanopatterning fabrication by soft X-ray generated chemical construction of a polystyrene benzaldehydeimine monolayer has been carried out from the polystyrenebezaldehyde resin with (3-aminopropyl) triethoxysilane for the first time. The molecular layer was exposed to soft X-rays; the involved chemical modification on the monolayer was analyzed by using Fourier transform infrared spectroscopy-attenuated total internal reflectance and contact angle measurement. As a result, we could confirm that the imine monolayer was cleaved upon the soft X-ray irradiation, leaving the hydrophobic part, the imine functionality was changed into a new nonhydrolysable, and the hydrophilic amine functionality was established from the unexposed imine monolayer through acid hydrolysis. This above phenomenon is used for the patterning of self-assembled monolayers. The microscope images revealed patterns as small as ≤52.4 nm with regular height and phase variations.  相似文献   

11.
Strontianite nanowires have been synthesized on self-assembled monolayers (SAM) in the presence of polyacrylate templates. The morphology of this product exhibits characteristic differences from that of products obtained in the absence of polyacrylate. It is demonstrated that the template-induced crystallization process involves the interaction between the SAM surface, polyacrylate (a dissolved polyelectrolyte), and the cations/anions in solution. By the combination of these components, hierarchically ordered mineral hybrid structures are formed.  相似文献   

12.
Direct laser patterning of surface energy gradients for alkanethiols on gold has been demonstrated. A homogeneous 1-hexadecanethiol self-assembled monolayer (SAM) on gold (supported by a glass substrate) was selectively desorbed using a focused laser beam. By continually varying the incident laser intensity along a straight line scan, a gradient in desorption was produced. This desorption gradient was then backfilled with the second SAM (16-mercaptohexadecanoic acid), to produce a wettability gradient. The gradient in wettability was characterized by condensation imaging. Secondary ion mass spectroscopy was also used to show variation of the second SAM population from maximum to zero along the length, representative of the chemical gradient. The hexadecanethiol desorption was found to be the most sensitive in a laser intensity range of 29.15-6.5 kW/cm2. By considering the functional behavior of the governing equations, the theoretical trend for desorption as a function of laser intensity (represented by the out-of-focus distance) was determined. It was found to conform to the experimental data. The proposed method is fast, simple, noncontact, and flexible in terms of producing different types of gradients.  相似文献   

13.
A novel strategy for the synthesis of layered organosilica is demonstrated. The ionic interaction between the anionic group of a surfactant (sodium dodecyl sulfate) and the cationic organic group of an organosilane (3-aminopropyltrimethoxysilane, ATMS) under acidic conditions was utilized to create a layered organosilica at room temperature. The inorganic part of the organosilica layer was an Si-O hexagonal sheet, and organofunctional groups were alternately arranged on both sides of the sheet. The layered structure of the ATMS organosilica was retained after the removal of the surfactant with chloride anion. The properties of the layered ATMS organosilica were investigated. The layered ATMS-Cl organosilica is stable and possesses a definite layer structure in water or ethanol. Various kinds of anions can be intercalated in the interlayer space of the layered ATMS organosilicas and the layer was expanded dependent on the intercalated anions. The structure of the layered ATMS organosilica was well retained during the intercalation processes.  相似文献   

14.
Ordered, tightly packed aryl-azide-terminated, self-assembled monolayers (SAMs) were created on gold substrates from a new disulfide precursor. These monolayers were reduced at least partially in an aqueous environment using approximately 2 nm CdS quantum dots (Qdots) as photocatalysts to give mixed monolayers of arylamine- and aryl azide-terminated species. The CdS photocatalysts were made available for the reaction by exposure of the azide-terminated SAM to Qdots initially in solution or by preadsorption of the CdS nanoparticles on the SAM. In either case, X-ray photoelectron spectroscopy (XPS), grazing angle Fourier transform infrared spectroscopy (FTIR), and contact angle measurements were used to show the occurrence of the photocatalytic reduction. As further evidence for the presence of arylamine-terminated thiolate in the reduced SAM, these arylamine groups were successfully tagged with fluorescein isothiocyanate (FITC). The use of Qdot photocatalysts to functionalize surfaces may lead to a means to pattern surfaces at the nanoscale.  相似文献   

15.
Chen H  Cheng H  Lee J  Kim JH  Hyun MH  Koh K 《Talanta》2008,76(1):49-53
Pirkle-type chiral stationary phases (CSPs) showed excellent enantiomeric separation for amino acid derivatives by forming energetically different two transient diastereomeric pi-pi donor-acceptor complexes with two enantiomers. A CSP derived from N-(3,5-dinitrobenzoyl) leucine with a thiol ending group for immobilization on Au was synthesized and self-assembled on Au surface as chiral sensing layer. The monolayer characterized by spectroscopic and microscopic methods such as AFM, FTIR reflection absorption spectroscopy (FTIR-RAS) and cyclic voltammetry (CV). The enantiospecific detection onto CSP of the leucine derivative was studied by surface plasmon resonance (SPR). (S)-CSP SAM showed high chiral differential detection for (S)-analyte in a range of 1.0x10(-9) to 1.0x10(-4) M. In combination with the SPR method, the leucine derivative monolayer provided a reliable and simple experimental platform for enantiospecific detection.  相似文献   

16.
A new method has been developed that allows spatially resolved adsorption of lactoferrin on a surface, by means of specific non-covalent interaction between the native protein and a patterned self-assembled monolayer of an iron-containing terpyridine complex.  相似文献   

17.
A wide range of biomineralization and templating methods exist for organizing inorganic materials at a wide range of length-scales. Here, we show that crystallographic control of the inorganic nanostructures is possible using synthetic biomolecular templates comprised of anionic DNA and cationic membranes, which self-assemble into a multilamellar structure where a periodic one-dimensional (1D) lattice of parallel DNA chains is confined between stacked two-dimensional (2D) lipid sheets. We have organized Cd2+ ions within the interhelical pores between DNA strands and subsequently reacted them with H2S to form CdS nanorods of controllable widths and crystallographic orientation. The strong electrostatic interactions align the templated CdS (002) polar planes parallel to the negatively charged sugar-phosphate DNA backbone, which indicates that molecular details of the DNA molecule are imprinted onto the inorganic crystal structure. The resultant nanorods have (002) planes tilted by 60 degrees with respect to the rod axis, in contrast to all known II-VI semiconductor nanorods.  相似文献   

18.
Cholesterol oxidase has been covalently immobilized onto 11-amino-1-undecanethiol hydrochloride (AUT) self-assembled monolayer (SAM) fabricated on gold (Au) substrates using glutaraldehyde as a cross-linker. These ChOx/AUT/Au bioelectrodes characterized using contact angle (CA) measurements; electrochemical technique and atomic force microscopy (AFM) have been utilized for the estimation of cholesterol in solution using the surface plasmon resonance (SPR) technique. These biosensing electrodes exhibiting linearity from 50 to 500 mg/dL of cholesterol in solution and sensitivity of 1.23 m0/(mg dL), can be used more than 20 times and have a shelf life of about 10 weeks when stored at 4 degrees C.  相似文献   

19.
A simple electrochemical immunoassay was demonstrated using a 17beta-estradiol modified electrode. 17beta-estradiol was immobilized on the gold electrode surface with a self-assembly technique. The specific binding between estradiol antibody and 17beta-estradiol on the electrode surface was evaluated by monitoring the change in the electrode response with three hydrophilic redox markers. The decrease in the electrode response for the redox marker was observed, when the antibody was bound to the estradiol self-assembled monolayer (SAM) electrode surface. The change in the electrode response of the redox marker is attributed to the steric hindrance between the antibody on the electrode surface and the redox marker. The relative standard deviation at 30 microg ml(-1) estradiol antibody was 4.1% (n = 3). The competitive reaction between the antigen in the solution and 17beta-estradiol immobilized on the electrode surface for the limited binding sites on the antibody produced an increase in the electrode response with hydroquinone as the marker. The binding affinity of three antigens including 17beta-estradiol to the estradiol antibody was evaluated. Furthermore, the result obtained from this method was compared with the previously reported enzyme binding assay using the biotinylated estradiol and the biotin-immobilized microtiter plate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号