首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

2.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

3.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

4.
Ni1−xCoxFe2O4 (x=0.6, 0.8 and 0.9) nanoparticles have been synthesized with various crystallite sizes depending on the thermal treatments and composition (cobalt content) using the sol-gel combustion method. The size of nanoparticles has been controlled by thermal treatment. On the other hand, the magnetic property of the ferrite has been controlled by changing the heat treatment. Morphology and particle sizes of Ni1−xCoxFe2O4 have been studied using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The presence of functional group has been identified by Fourier Transform Infrared (FTIR) spectra. From TGA-DTA studies, the weight gains of Ni1−xCoxFe2O4 nanoparticles have been observed and it might be due to capping organic molecules with oxygen at temperatures above 200 °C. Magnetic properties of Ni1−xCoxFe2O4 particles have been analysed using VSM and it is found that saturation magnetization (Ms) has increased with particle size and has coercivity (Hc) increased initially and then decreased. The Ms and Hc values decreased with the increase of content of cobalt in Ni1−xCoxFe2O4.  相似文献   

5.
Polycrystalline ferrites with general formula Co0.5CdxFe2.5−xO4 (0.0?x?0.5) were prepared by sol-gel method. The dielectric properties ε′, ε″, loss tangent tan δ and ac conductivity σac have been studied as a function of frequency, temperature and composition. The experimental results indicate that ε′, ε″, tan δ and σac decrease as the frequency increases; whereas they increase as the temperature increases. These parameters are found to increase by increasing the concentration of Cd content up to x=0.2, after which they start to decrease with further increase in concentration of Cd ion. The dielectric properties and ac conductivity in studied samples have been explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model and the hoping between adjacent Fe2+ and Fe3+ as well as the hole hopping between Co3+and Co2+ ions at B-sites. The values of activation energies Ef for conduction process are determined from Arrhenius plots, and the variations in these activation energies as a function of Cd content are discussed. The complex impedance analysis is used to separate the grain and grain boundary of the system Co0.5CdxFe2.5−xO4. The variations of both grain boundary and grain resistances with temperature and composition are evaluated in the frequency range 42 Hz-5 MHz.  相似文献   

6.
The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca10−3xFe2xCox(PO4)6(OH)2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe2O4. Electron spin resonance measurements indicate that the Co2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe3+/Co2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe3+ and the other for the B-site Fe3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe2O4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe3+ and Co2+ which being used to form the CoO and Fe2O3 impurity phase seen in the XRD patterns.  相似文献   

7.
Magnetic nanocomposites of Sm(Co1−xFex)5/Fe3O4 (x≈0.1) with the core/shell type structure were successfully fabricated using a two-step polyol process, where as-prepared SmCo5(1−x) nanoparticles were used as seeds for the ferrite coating. The core/shell composites are quite stable in air and show a typical hysteric behavior of single component, yielding an enhanced coercivity of 2.2 kOe with a saturated magnetization of 130 emu/g at 5 T. The magnetization data clearly reveal the presence of effective exchange coupling between the hard-magnetic Sm(Co1−xFex)5 core and soft-magnetic Fe3O4 shell, suggestive of a single-phase structure rather than a distinctive two-phase one.  相似文献   

8.
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−yzO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.  相似文献   

9.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

10.
Multiferroic Bi0.95Sm0.05Fe1−xCoxO3 (x=0−0.1) ceramics were prepared by the rapid liquid phase sintering method. For all the samples studied, the dielectric constant and dielectric loss decrease with increasing frequency in the range from 1 kHz to 1 MHz. It shows that the dielectric constant of Bi0.95Sm0.05FeO3 at 10 kHz is about forty times larger than that of pure BiFeO3. This dramatic change in the dielectric properties of Bi0.95Sm0.05Fe1−xCoxO3 (x=0−0.1) samples can be understood in terms of the space charge limited conduction associated with crystal defects, which was indicated by the increase of magnetoelectric effect with doping Co3+ under applied magnetic field from 1 to 8 kOe. It was believed that the ferroelectric polarization enhancement comes from the exchange interaction between the Sm3+ and Fe3+ or Co3+ ions for Bi0.95Sm0.05Fe0.95Co0.05O3 at room temperature.  相似文献   

11.
In this work, The magnetoelastic properties of polycrystalline samples of Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) intermetallic compounds are investigated by means of linear thermal expansion and magnetostriction measurements in the temperature range of 77–515 K under applied magnetic fields up to 1.5 T. The linear thermal expansion increases with the Co content. The well-defined anomalies observed in the linear thermal expansion coefficients for Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) compounds are associated with the magnetic ordering temperature for x=0 and spin reorientation temperatures for x=3, 6. Below transition temperatures, the value of the longitudinal magnetostriction (λPa) at 1.6 T increases with Co content.  相似文献   

12.
This work presents a systematic investigation on the structural and magnetic properties of Co1−xZnxFe2O4 (0.5<x<0.75) nanoparticles synthesized by the chemical co-precipitation method. The X-ray diffraction analysis, the Fourier Transform Infrared (FTIR) and the Vibrating Sample Magnetometer were carried out at room temperature to study the micro-structural and magnetic properties. The X-ray measurements revealed the production of a broad single cubic phase with the crystallite size within the range of 6–10 nm. The FTIR measurements between 400 and 4000 cm−1 confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements show that the saturation magnetization and coercivity decrease by increasing the zinc content. Furthermore, the results reveal that the sample with a chemical composition of Co0.3Zn0.7Fe2O4 exhibits the super-paramagnetic behavior and the Curie point of 97 °C.  相似文献   

13.
A series of polycrystalline ferrites having nominal chemical composition Co0.50−xMnxZn0.5Fe2O4 (0<x<0.4) have been synthesized by the solid-state reaction technique. The XRD analysis confirms single phase cubic spinel structure for all compositions. Lattice constant increases from 0.84195 to 0.84429 nm with the increasing Mn content and obeys Vegard's law. The average grain size increases by increasing both Mn content and sintering temperatures. Room temperature saturation magnetization increases for x=0.1 and decreases for increasing Mn content. The coercivity decreases with increasing Mn content due to the decrease of anisotropy constant. A reentrant spin glass behavior of these samples is observed from the zero field cooled magnetization measurements. The real part of the initial permeability increases by increasing both Mn content and sintering temperatures. This is due to the homogeneous grain growth and densification of the ferrites. The highest initial permeability 137 is observed for x=0.4 sintered at 1573 K on the other hand, the highest relative quality factor (2522) is obtained for the sample Co0.2Mn0.3Zn0.5Fe2O4 sintered at 1523 K. The Mn substituted Co0.50−xMnxZn0.5Fe2O4 ferrites showed improved magnetic properties.  相似文献   

14.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

15.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

16.
Two methods for the preparation of LaCoO3 samples were used: thermal decomposition of La-Co citrate precursors obtained by freeze-drying of the corresponding solutions and by a solid state reaction. Microstructural characterization was made by electron paramagnetic resonance spectroscopy (EPR). For assignment of the EPR signals, La1−xSrxCoO3 samples were used as EPR references. The LaCoO3 oxides prepared from citrates and by a solid state reaction were shown to differ in respect of the mean oxidation state of the cobalt ions, the specific surface area and the particle morphology. EPR spectroscopy reveals for ex-citrate LaCoO3 ferromagnetic Co3+ and Co4+ coupled ions. For LaCoO3 samples obtained by a solid state reaction, EPR permits detecting Co3O4 impurities only.  相似文献   

17.
Mössbauer spectra have been obtained for the cobalt-iron spinels having the general formula COxFe3?xO4 for the whole range of composition, materials from x = 0 to x = 2.76 having been studied. The spectra fall into three groups: (A) Those for spinels for which 0 < χ < 1 which show two six-peak sets of lines corresponding to exchanging Fe2+/Fe3+ and to Fe3+ iron; (B) those for spinels containing Fe3+ iron only which show magnetic splitting 1 < χ < 2; (C) those for spinels containing Fe3+ iron only which show quadrupole splitting but no magnetic splitting (x = 2.3, 2.5 and 2.8). The significance of the various spectra in relation to the structure of these mixed oxides is discussed.  相似文献   

18.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

19.
Improvement for electrochemical luminescence (ECL) property of MgIn2O4 is attempted by partial exchange of Mg2+ ion in MgIn2O4 to Ca2+ ion. Mg1−xCaxIn2O4 solid solution was obtained in the region 0<x<0.4. Efficiency for ECL per unit current for Mg1−xCaxIn2O4:Er3+ increased with the increase in the ratio of Ca2+ ion, and showed a peak at x=0.25 and then decreased steeply. ECL efficiency for other rare-earth ion-(RE:Sm, Eu, Ho) doped Mg1−xCaxIn2O4 also increased comparing with those for MgIn2O4:RE. This Ca2+ addition effect on the ECL efficiency seems to be caused by the improvement of the efficiency for the impact activation.  相似文献   

20.
Lead vanadate glasses of the system 5Li2O−(45−x) PbO−(50+x) V2O5, with x=0, 5, 10, and 15 mol% have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC using continuous-heating techniques. In addition, from dependence of the glass-transition temperature (Tg) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined and the crystallization mechanism was characterized. The results reveal the increase of the activation energy for glass transition which was attributed to the increase in the rigidity, the cross-link density and the packing density of these glasses. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of Li0.30V2O5, Li0.67O5V2, LiV6O15, Li4O4Pb, and O7Pb2V2 in a remaining amorphous matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号