首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of imidazolium-based room-temperature ionic liquids (RTILs) containing anions from organic carboxylic acids were prepared. A set of dye probes, including Reichardt's dye (30), 4-nitrioaniline, and N, N-diethyl-4-nitroaniline, were used to determine the ET(30) scales and the Kamlet-Taft parameters (pi*, alpha, and beta) of the RTILs. On the basis of the polarity properties, these RTILs were categorized into three groups: group A with beta >0.9, alpha <0.9; group B with beta <0.9, alpha <0.9; and group C with beta <0.9, alpha >0.9. Interactions of these RTILs with four photochromic spiropyran derivatives (SP-I, SP-II, SP-III, and SP-IV) were investigated. It was found that the spiropyrans could present photochromism (positive or negative) or not, depending mainly on the polarity properties of the RTILs and also on the structure itself. A new spectroscopic method based on the molecular transition energy of the spiropyran probes (ESP) was proposed to determine the polarity of those protic or fluorine-containing RTILs, which were failed with the Reichardt's dye (30) probe.  相似文献   

2.
Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes: (1) equilibrium and kinetic rate constants of chemical reactions; (2) empirical polar parameters of ionic liquids; (3) spectral properties of probe molecules; (4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.  相似文献   

3.
Radical cations and dications of three bishydrazines belonging to the Class II mixed valence compounds have been generated, either spontaneously or by oxidation with AgSbF6, in two 1-butyl-3-methylimidazolium (4+) ionic liquids having BF4(-) and PF6(-) as counterions. The optical spectra of these intermediates have allowed evaluation of Marcus' reorganization energy lambda(s), a parameter that is directly proportional to the solvent polarity. Remarkable differences in lambda(s), as large as 600 cm(-1), have been observed as a function of the counterion, with these data providing support for the observed differences between both ionic liquids (4(+)BF4(-) and 4(+)PF6(-)) in catalysis. However, in terms of polarity, the lambda(s) values rank the hydrophilic 4(+)BF4(-) as being similar to dimethyl sulfoxide and dimethylformamide, while the polarity of hydrophobic 4(+)PF6(-) is analogous to acetonitrile. Overall, our results indicate that ionic liquids are not exceptional liquids in terms of polarity.  相似文献   

4.
The ionic environment within solutions of lithium perchlorate-diethyl ether (LPDE) was probed by utilizing the extraordinary spectral shifts these media impart on various nitroanilines at 25 degrees C. These compounds all have UV-visible spectra that are sensitive to the polarity of the medium and the nitroanilines investigated all exhibited varying degrees of solvatochromatic behavior in LPDE solutions. In all cases, the low-energy absorbance band exhibited a dependence upon LiClO(4) concentration throughout the entire solubility range investigated. For 4-nitroaniline and N,N-dimethyl-4-nitroaniline bathochromic shifts of 51.3 and 62.0 nm, respectively, were observed on going from pure ether to a 5.7 M LPDE solution, corresponding to a stabilization of 10.55 and 11.13 kcal mol(-1), respectively, for this transition. Thus, as the medium changes from diethyl ether to one containing ionic clusters of lithium perchlorate-diethyl ether, less energy is required to transfer the molecules from their ground states to their first excited states. For 2,6-dibromo- and 2,6-diiodo-4-nitroaniline smaller red shifts of 19.0 and 9.0 nm, respectively, were noted over the same concentration range of LPDE, resulting in stabilizations of 4.45 and 2.11 kcal mol(-1), respectively. Analysis of the observed molar transition energies indicates that for 4-nitroaniline and N,N-dimethyl-4-nitroaniline the stabilization of the zwitterionic excited states of such push-pull molecules is on the order of 2.0 kcal mol(-1) per mol of added salt. Furthermore, such stabilization is independent of the composition of the media. Thus these compounds can act as solvent polarity indicators for LPDE solutions throughout the entire solubility range of LiClO(4) in diethyl ether. As such, linear relationships are seen between the E(T) values of 4-nitroaniline and N,N-dimethyl-4-nitroaniline and the log of the second-order rate constants for the [4+2] cycloaddition reaction of 9,10-dimethylanthracene and acrylonitrile in LPDE. We also observe linear relationships between the E(T) values of 4-nitroaniline and N,N-dimethyl-4-nitroaniline and the keto-enol ratio of acetylacetone in LPDE.  相似文献   

5.
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.  相似文献   

6.
Functionalized and environmentally friendly ionic liquids are required in many fields, but convenient methods for measuring their polarity are lacking. Two novel ether-functionalized amino acid ionic liquids, 1-(2-methoxyethyl)-3-methylimidazolium alanine ([C1OC2mim][Ala]) and 1-(2-ethoxyethyl)-3-methylimidazolium alanine ([C2OC2mim][Ala]), were synthesized by a neutralization method and their structures confirmed by NMR spectroscopy. Density, surface tension, and refractive index were determined using the standard addition method. The strength of intermolecular interactions within these ionic liquids was examined in terms of standard entropy, lattice energy, and association enthalpy. A new polarity scale, PN, is now proposed, which divides polarity into two compartments: the surface and the body of the liquid. Surface tension is predicted via an improved Lorentz-Lorenz equation, and molar surface entropy is used to determine the polarity of the surface. This new PN scale is based on easily measured physicochemical parameters, is validated against alternative polarity scales, and is applicable to both ionic and molecular liquids.  相似文献   

7.
The nature of solvation of Reichardt’s dye in ionic liquids is investigated through semiempirical calculations. We build on the basis of electrostatic considerations a cluster of three ionic pairs that represent the first solvation shell of the dye. The spatial organization of this shell is a balance between sterical, electrostatic and, in the case of functionalized ionic liquids, specific interactions. This model is not sufficient to obtain values of ET(30) quantitatively comparable to the experimental ones, but some qualitative features can be rationalized. The resulting scenario of solute–solvent interactions is different with respect to molecular solvents. Thus, we suggest caution in comparing ionic and molecular solvents through solvatochromic scales.  相似文献   

8.
Several ionic liquids containing pyrrolidinium-, oxopyrrolidinium-, piperidinium-, morpholinium- and trialkylammonium-based cation are synthesized and their thermal property, refractive index, polarity, electrochemical property, and temperature dependency of dynamic viscosity, density and ionic conductivity are characterized. All tetrafluoroborate-based room temperature ionic liquids studied here have a high ionic conductivity (up to 31.4 mS cm?1). These ILs were successfully used as suitable electrolytes for the diffusion coefficient measurement of ferrocene. Absorbance solvatochromic probes Nile red is used to investigate the relative polarity of these ionic liquids and compared them with several organic solvents. The relation of fluidity to conductance is considered in terms of a Walden plot that is shown to provide a useful basis for organizing the applications of solvent media for ??green?? synthetic reactions.  相似文献   

9.
Ionic liquids based on the 1-methylimidazolium cation with chloride, bromide, hydrogen sulfate, and tetrafluoroborate counterions along with 1-butyl-3-methylimidazolium hydrogen sulfate were employed to degrade two lignin model compounds, guaiacylglycerol-β-guaiacyl ether and veratrylglycerol-β-guaiacyl ether. The acidity of each ionic liquid was approximated using 3-nitroaniline as an indicator to measure the Hammett acidity (H0). While all of the tested ionic liquids were strongly acidic (H0 between 1.48 and 2.08), the relative acidity did not correlate with the ability of the ionic liquid to catalyze β-O-4 ether bond hydrolysis. The reactivity of the model compounds in the ionic liquids is dependent not only on the acidity, but also on the nature of the ions and their interaction with the model compounds.  相似文献   

10.
Binary mixtures of 1,3-dialkylimidazolium based ionic liquids (ILs) and water were selected as solvent systems to investigate the solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators at 25℃. Empirical solvatochromic parameters, dipolarity/polarizability (π*), hydrogen-bond donor acidity (α), hydrogen-bond acceptor basicity (β), and Reichardt's polarity parameters (ETN) were measured from the ultraviolet-visible spectral shifts of 4-nitroaniline, 4-nitroanisole, and Reichardt's dye. The solvent properties of the IL-water mixtures were found to be influenced by IL type and IL mole fraction (xIL). All these studied systems showed the non-ideal behavior. The maximum deviation to ideality for the solvatochromic parameters can be obtained in the xIL range from 0.1 to 0.3. For most of the binary mixtures, the π* values showed the synergistic effects instead of the ETN, α and β values. The observed synergy extent was dependent on the studied systems, such as the dye indicator and IL type. A preferential solvation model was utilized to gather information on the molecular interactions in the mixtures. The dye indicator was preferentially solvated on the following trend: IL >IL-water complex >water.  相似文献   

11.
We have measured the terahertz (THz) complex dielectric spectra of imidazolium ionic liquids by THz time-domain spectroscopy (THz-TDS) in the frequency range from 5 (0.15 THz) to 140 cm(-1) (4.2 THz). The ionic liquids investigated are 1-ethyl-3-methylimidazolium (EMIm+)/trifluoromethanesulfonate (TfO-), EMIm+/tetrafluoroborate (BF(4)-), 1-butyl-3-methylimidazolium (BMIm+)/TfO-, and BMIm+/BF(4)-. The dielectric values of the ionic liquids in the THz region are similar to those of short-chain alcohols. The THz dielectric values are related to subpicosecond-to-picosecond dynamics. The same trend has been observed in the empirical polarity ET(30) although it is related to the static characteristics of polarity and hydrogen bonding ability. A difference between the two types of liquids is observed in the THz dielectric spectral shapes: the ionic liquids show structured lineshapes but short-chain alcohols show much less structured ones. The structured lineshapes of the ionic liquids reflect the low-frequency motions of interion and/or intramolecular vibrations. When the ionic liquids composed of the different imidazolium cations contain the same anions as counterions, their density-normalized THz dielectric spectra above 20 cm(-1) bear strong resemblance to each other in shape and magnitude. It shows clearly that the THz spectra do not originate from the intramolecular vibrations of the imodazolium cations. All of the intramolecular vibrations of the anions are located above 140 cm(-1) except the CF3-SO3 torsion of TfO-, the band of which alone cannot explain the broad THz dielectric spectra of the ionic liquids. Therefore, we conclude that the interion vibrations rather than the intramolecular vibrations dominantly contribute to the THz dielectric spectra. The results strongly indicate that even in the liquid phase the ionic liquids have local structures similar to their solid-phase structures.  相似文献   

12.
The solvatochromic properties of [Pt(mesBIAN)(tda)] are studied in traditional molecular solvents and ionic liquids and duly compared along established empirical solvent parameter scales. The charge‐transfer absorption band of [Pt(mesBIAN)(tda)] is determined to be primarily dependent upon solvent acidity and dipolarity. Notably, ionic liquids do not obey the same well‐behaved trend as molecular solvents, highlighting the complexity and domain (nano)segregation inherent to ionic liquids.  相似文献   

13.
Two ionic liquids based upon N-alkyl-N-methylpyrrolidinium cations (PY(1R)(+)) (R=3 for propyl or 4 for butyl) and the bis(fluorosulfonyl)imide (FSI(-)), N(SO2F)2(-), anion have been extensively characterized. The ionic conductivity and viscosity of these materials are found to be among the highest and lowest, respectively, reported for aprotic ionic liquids. Both ionic liquids crystallize readily on cooling and undergo several solid-solid phase transitions on heating prior to melting. PY13FSI and PY14FSI are found to melt at -9 and -18 degrees C, respectively. The thermal stability of PY13FSI and PY14FSI is notably lower than for the analogous salts with the bis(trifluoromethanesulfonyl)imide (TFSI(-)), N(SO2CF3)2(-), anion. Both ionic liquids have a relatively wide electrochemical stability window of approximately 5 V.  相似文献   

14.
A quantum-chemical computational approach to accurately predict the nuclear magnetic resonance (NMR) properties of 1-alkyl-3-methylimidazolium ionic liquids has been performed by the gauge-including atomic orbitals method at the B3LYP/6-31++G** level using different simulated ionic liquid environments. The first molecular model chosen to describe the ionic liquid system includes the gas-phase optimized structures of ion pairs and separated ions of a series of imidazolium salts containing methyl, butyl, and octyl substituents and PF6-, BF4-, and Br- anions. In addition, a continuum polarizable model of solvation has been applied to predict the effects of the medium polarity on the molecular properties of 1,3-dimethylimidazolium hexafluorophosphate (MmimPF6). Furthermore, the specific acidic and basic solute-solvent interactions have been simulated by a discrete solvation model based on molecular clusters formed by MmimPF6 species and a discrete number of water molecules. The computational prediction of the NMR spectra allows a consistent interpretation of the dispersed experimental evidence in the literature. The following are main contributions of this work: (a) Theoretical results state the presence of a chemical equilibrium between ion-pair aggregates and solvent-separated counterions of 1-alkyl-3-methylimidazolium salts which is tuned by the solvent environment; thus, strong specific (acidic and basic) and nonspecific (polarity and polarizability) solvent interactions are predicted favoring the dissociated ionic species. (b) The calculated 1H and 13C NMR properties of these ionic liquids are revealed as highly dependent on the nature of solute-solvent interactions. Thus, the chemical shift of the hydrogen atom in position two of the imidazolium ring is deviated to high values by the specific interactions with water molecules, whereas nonspecific interaction with water (as a solvent) affects, in the opposite direction, this 1H NMR parameter. (c) Last, current calculations support the presence of hydrogen bonding between counterions, suggesting the importance of this interaction in the properties of the solvent in the 1-alkyl-3-methylimidazolium ionic liquids.  相似文献   

15.
The nucleophilic reactivity of a homogeneous series of anions (halides, pseudohalides and organic anions) in the ionic liquids [hexmim] [ClO4] and [hexmim] [PF6] has been measured in their reaction with n-alkyl methanesulfonates, and compared with that found in traditional molecular solvents of different polarity, that is, chlorobenzene, DMSO, and MeOH.  相似文献   

16.
The solvation dynamics of ionic liquids have been the subject of intense experimental study but remain poorly understood. We present the results of molecular dynamics simulations of the solvation dynamics of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in response to photoexcitation of the fluorescent dye coumarin-153. We reproduce the time-resolved fluorescence Stokes shift using linear response theory, then use novel statistical techniques to analyze cation and anion contributions to the signal. We find that the solvation dynamics are dominated by collective ionic motion and characterize the time scale for various features of the collective response. Further, we use the Steele analysis [Mol. Phys. 61, 1031 (1987)] to characterize the contributions to the observed Stokes shift made by translational and rovibrational degrees of freedom. Our results indicate that in contrast to molecular liquids, the rovibrational response is trivial and the observed fluorescence response arises almost entirely from ionic translation. Our results resolve previously open questions in the literature about the nature of the rapid dynamics in room-temperature ionic liquids and offer insight into the physical principles governing ionic liquid behavior on longer time scales.  相似文献   

17.
Dynamic solvation of the dye, coumarin 153, is compared in an ionic liquid that forms micelles in water against the bulk solvent. This provides the unprecedented opportunity of investigating the behavior of the ionic liquid in two globally different configurations. It is proposed that the imidazolium moiety is in both cases responsible for the majority of the solvation, which manifests itself in the first 100 ps. Exploiting the use of ionic liquids capable of accommodating specific structures thus provides a deeper insight into how solutes interact with these fascinating and interesting solvents (at least those that are imidazolium based) that are gaining ever increasing interest in the scientific community.  相似文献   

18.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

19.
The ability to electrodeposit titanium at low temperatures would be an important breakthrough for making corrosion resistant layers on a variety of technically important materials. Ionic liquids have often been considered as suitable solvents for the electrodeposition of titanium. In the present paper we have extensively investigated whether titanium can be electrodeposited from its halides (TiCl(4), TiF(4), TiI(4)) in different ionic liquids, namely1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf(2)N), 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)amide ([BMP]Tf(2)N), and trihexyltetradecyl-phosphonium bis(trifluoromethylsulfonyl)amide ([P(14,6,6,6)]Tf(2)N). Cyclic voltammetry and EQCM measurements show that, instead of elemental Ti, only non-stoichiometric halides are formed, for example with average stoichiometries of TiCl(0.2), TiCl(0.5) and TiCl(1.1). In situ STM measurements show that-in the best case-an ultrathin layer of Ti or TiCl(x) with thickness below 1 nm can be obtained. In addition, results from both electrochemical and chemical reduction experiments of TiCl(4) in a number of these ionic liquids support the formation of insoluble titanium cation-chloride complex species often involving the solvent. Solubility studies suggest that TiCl(3) and, particularly, TiCl(2) have very limited solubility in these Tf(2)N based ionic liquids. Therefore it does not appear possible to reduce Ti(4+) completely to the metal in the presence of chloride. Successful deposition processing for titanium in ionic liquids will require different maybe tailor-made titanium precursors that avoid these problems.  相似文献   

20.
功能化苯并咪唑类离子液体的合成及性质   总被引:1,自引:0,他引:1  
合成了一系列由磺酸基、 羧基修饰的新型功能化苯并咪唑类离子液体, 采用IR, 1H NMR, 13C NMR和ESI-MS对其结构进行了表征, 研究了化合物的热稳定性、 电导率以及室温下在各种溶剂中的溶解性等性质. 结果表明, 该类离子液体在 280 ℃以下基本没有失重, 热稳定性较好; 在水溶液浓度为1×10-3 mol/L时, 随着温度的升高, 电导率几乎与温度呈正比增大; 能与大多数有机溶剂互溶, 溶解性随着溶剂极性的增加而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号