首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We presented the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 host. The Ce3+-doped CaAl2Si2O8 phosphor had a strong emission band at 378 nm under the vacuum ultraviolet (VUV) light. This emission spectrum of Ce3+ well overlapped with the excitation spectrum of Eu2+ under the UV illumination. As a result, the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 matrix was observed under VUV excitation, which resulted in a significant enhancement of the emission peak intensity at 446 nm. More details about the luminescent properties were presented.  相似文献   

2.
The monoclinic Ba2ZnSi2O7:Eu2+ blue-green-emitting phosphor and the orthorhombic BaZn2Si2O7:Eu2+ green-emitting phosphor were prepared by combustion-assisted synthesis method as the fluorescent materials for ultraviolet-light-emitting diodes (UV-LEDs) performed as a light source. The crystallinity and luminescence were investigated using X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Pure monoclinic Ba2ZnSi2O7 and orthorhombic BaZn2Si2O7 crystallize completely at 1100 °C. The doped Eu2+ ions did not cause any significant change in the host structure. The emission spectra presented an emission position red shift of up to 16 nm from Ba2ZnSi2O7:Eu2+ to BaZn2Si2O7:Eu2+. The excitation spectra of Ba2ZnSi2O7:Eu2+ and BaZn2Si2O7:Eu2+ were broad-banding, extending from 260 to 465 nm, which match the emission of UV-LEDs.  相似文献   

3.
A blue emitting phosphor of the triclinic BaCa2Si3O9:Eu2+ was prepared by the combustion-assisted synthesis method and an efficient blue emission ranging from the ultraviolet to visible was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometry (XRD), respectively. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu2+ in BaCa2Si3O9:Eu2+ phosphor is about 0.05 mol. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The CIE of the optimized sample Ba0.95Ca2Si3O9:Eu0.052+ was (x, y)=(0.164, 0.111). The result indicates that BaCa2Si3O9:Eu2+ can be potentially useful as a UV radiation-converting phosphor for white light-emitting diodes (LEDs).  相似文献   

4.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

5.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

6.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

7.
A novel orange-yellow-emitting Ba2LiB5O10:Eu2+ phosphor has been synthesized by traditional high temperature solid state reaction. A monoclinic crystal structure of Barium lithiumborates Ba2LiB5O10 was verified by the investigation of X-ray diffraction (XRD). The compound crystallizes in the space group of P121/m1(11) (Z = 2) with the unit cell parameters a = 4.414(1) Å, b = 14.576(2) Å, c = 6.697(2) Å and β = 104.26(2)°. Barium and lithium atoms are located in distorted octahedral and tetrahedral oxygen coordinations, respectively. Upon around 365 nm excitation, the Eu2+-activated Ba2LiB5O10 phosphors exhibit a single broad emission band with the maximum at about 587 nm, due to the 4f65d → 4f7(8S7/2) transition of Eu2+. This work investigates the relationship between luminescence properties and structural characterization of the Ba2LiB5O10: Eu2+. This newly developed phosphor shows high potential as a phosphor conversion for white LED applications.  相似文献   

8.
Y2O3:Eu3+ phosphor films have been developed by using the sol-gel process. Comprehensive characterization methods such as Photoluminescent (PL) spectroscopy, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were used to characterize the Y2O3:Eu3+ phosphor films. In this experiment, the XRD profiles show that the Y2O3:Eu3+ phosphor films crystallization temperature and optimum annealing temperature occur at about 650 and 750 °C, respectively. The optimum dopant concentration is 12 mol% Eu3+ and the critical transfer distance (Rc) among Eu3+ ions is calculated to be about 0.84 nm. Vacuum environment is more efficient than oxygen and nitrogen to eliminate the OH content and hence yields higher luminescent phosphor films. The PL emission intensity of Y2O3:Eu3+ phosphor films is also dependent on the annealing time. It was found that the H2O impurities were effectively eliminated after annealing time of 25 s at 750 °C in vacuum environment. From the experiment results, the schematic energy band diagram of Y2O3:Eu3+ phosphor films is constructed.  相似文献   

9.
Eu2+ and Dy3+ co-doped calcium aluminate, barium aluminate and strontium aluminate phosphors were synthesized at an initiating combustion temperature of 500 °C using urea as an organic fuel. The crystallinity of the phosphors was investigated by using X-ray diffraction (XRD) and the morphology was determined by a scanning electron microscope (SEM). The low temperature monoclinic structure for both CaAl2O4 and SrAl2O4 and the hexagonal structure of BaAl2O4 were observed. The effect of the host materials on the photoluminescence (PL) and phosphorescence properties were investigated by using a He-Cd Laser and a Cary Eclipse fluorescence spectrophotometer, respectively. The broad band emission spectra observed at 449 nm for CaAl2O4:Eu2+, Dy3+, 450 nm (with a shoulder-peak at 500 nm) for BaAl2O4:Eu2+, Dy3+ and 528 nm for SrAl2O4:Eu2+, Dy3+ are attributed to the 4f65d1 to 4f7 transition in the Eu2+ ion in the different hosts.  相似文献   

10.
Europium doped LaMgAl11O19 phosphor was prepared by the combustion method. The as-prepared and post-treated (1350 °C 10 h 5% H2+95% N2) phosphors were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques. XRD patterns show that LaMgAl11O19:Eu phosphors have hexagonal structure. FT-IR spectrum exhibits absorption bands corresponding to the stretching vibration of AlO4 and AlO6. Morphological studies reveal that this phosphor has faceted plates of varying sizes and shapes. The as-prepared LaMgAl11O19:Eu phosphor consists of both Eu3+ and Eu2+ ions. The phosphor exhibits a bright blue emission at 450 nm (4f65d→4f7 transition of Eu2+). On post-treating the phosphor we are able to enhance the blue emission efficiency by 330%. The process was detected from the evolution of excitation, emission and EPR spectra and the results are discussed.  相似文献   

11.
A red-emitting phosphor NaSrB5O9:Eu3+ was synthesized by employing a solid-state reaction (SSR) method. The structures of the phosphors were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman studies. The band at ~282 nm in the excitation spectra indicated the charge transfer band (CTB) of B-O in the host, whereas the CTB of Eu-O was observed at ~275 nm for the NaSrB5O9:Eu3+ (Eu3+=1 at.%) phosphor, which was supported by diffuse reflectance spectroscopy (DRS) measurements. The photoluminescence (PL) measurements exhibited a strong red emission band centered at about 616 nm (5D07F2) under an excitation wavelength of 394 nm (7F05L6). Upon host excitation at 282 nm, the pristine NaSrB5O9 exhibited a broad UV emission centered at ~362 nm. The energy transfer from host to Eu3+ ions was confirmed from luminescence spectra, excited with a 355 nm Nd:YAG laser. In addition, the asymmetric ratios indicate a higher local symmetry around the Eu3+ ion in the host. The calculated CIE (Commission International de l′Eclairage) coordinates displayed excellent color purity efficiencies (around 99.7%) compared to other luminescent materials.  相似文献   

12.
CaZrSi2O7 (CZS), a modification of the thortveitite family, was prepared as a polycrystalline powder material by the conventional solid-state reaction method. Structural, thermal and photoluminescence (PL) properties of the prepared material were investigated in order to evaluate its potentiality. XRD patterns confirm the monoclinic phase of CaZrSi2O7: Eu2+ phosphors.. Emissions arising from transitions between the 5d and 4f orbital gaps of Eu2+ are manifested in the broadband excitation and emission spectra with major peaks at 363 and 512 nm, respectively. The excitation wavelength matches well with that of the emission of the ultraviolet-light emitting diode (UV-LED). Concentration quenching occurs when the Eu2+ concentration is beyond 0.05 and the dipole-dipole interaction was the reason for the corresponding quenching mechanism. The temperature dependence of emission intensity of CZS: Eu2+ phosphor was investigated and it showed better thermal stability than the standard YAG: Ce3+ phosphor.  相似文献   

13.
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence.  相似文献   

14.
A red-emitting phosphor material, Gd2Ti2O7:Eu3+, V4+, by added vanadium ions is synthesized using the sol-gel method. Phosphor characterization by high-resolution transmission electron microscopy shows that the phosphor possesses a good crystalline structure, while scanning electron microscopy reveals a uniform phosphor particle size in the range of 230-270 nm. X-ray photon electron spectrum analysis demonstrates that the V4+ ion promotes an electron dipole transition of Gd2Ti2O7:Eu3+ phosphors, causing a new red-emitting phenomenon, and CIE value shifts to x=0.63, y=0.34 (a purer red region) from x=0.57, y=0.33 (CIE of Gd2Ti2O7:Eu3+). The optimal composition of the novel red-emitting phosphor is about 26% of V4+ ions while the material is calcinated at 800  °C. The results of electroluminescent property of the material by field emission experiment by CNT-contained cathode agreed well with that of photoluminescent analysis.  相似文献   

15.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

16.
Samples of SrAl2O4:Eu3+ doped with B3+ and SrAl2O4:Eu3+ co-doped with B3+ and Li+ have been prepared by the solid-reaction method. The influence of B3+ and Li+ contents on luminescence property has been investigated. It is found that the substitution of B3+ for Al3+ greatly improves red emission intensity at 591, 615 and 701 nm. The dopant Li+ as charge compensator in SrAl2O4:Eu3+, B3+ can further enhance luminescence intensity. The strongest red emission is obtained in the Sr(Al1.9, B0.1)O4:Eu0.023+, Li+0.02 sample. The developed phosphors can be efficiently excited by ultraviolet (UV) light from 350 to 480 nm, which indicates that B3+ and Li+ co-doped SrAl2O4:Eu3+ is a good candidate phosphor applied in solid-state lighting in conjunction with white UV light-emitting diodes (LEDs).  相似文献   

17.
A phosphate compound, BaMgP2O7 was co-doped with Eu2+ and Mn2+ for making a red-emitting phosphor. The phosphor was prepared by a solid-state reaction at high temperature. The photoluminescence properties were investigated under ultraviolet (UV) ray excitation. From a powder X-ray diffraction (XRD) analysis, the formation of single-phased BaMgP2O7 with a monoclinic structure was confirmed. In the photoluminescence spectra, the BaMgP2O7:Eu,Mn phosphor emits two distinctive colors: a blue band centered at 409 nm originating from Eu2+ and a red band at 615 nm caused by Mn2+. Also, efficient energy transfer from Eu2+ to Mn2+ in the BaMgP2O7:Eu,Mn system was verified by observing that the excitation spectra of BaMgP2O7:Eu,Mn emitted at 409 and 615 nm by Eu2+ emission and Mn2+ emission, respectively, are almost the same as that of BaMgP2O7:Eu monitored at 409 nm. The optimum concentration of Eu2+ ions in BaMgP2O7:0.015Eu excited at 309 nm wavelength is 1.5 mol%. With an increase of Mn2+ content up to 17.5 mol%, a systematic decline in the intensity of the excitation spectrum by Eu2+ and a gradual growth in the intensity of emission band by Mn2+ were observed. Accordingly, the optimum concentration of Mn2+ in BaMgP2O7:0.015Eu,Mn is 17.5 mol%. The maximum spectral overlap between emission of Eu2+ and excitation of Mn2+ is achieved in a composition of BaMgP2O7:0.015Eu,0.175Mn, resulting in considerable red-emission at 615 nm.  相似文献   

18.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

19.
This paper reports the photoluminescence and afterglow behavior of Eu2+ and Eu3+ in Sr3Al2O6 matrix co-doped with Dy3+. The samples containing Eu2+ and Eu3+ were prepared via solid-state reaction. X-ray diffraction (XRD), photo luminescent spectroscope (PLS) and thermal luminescent spectroscope (TLS) were employed to characterize the phosphors. The comparison between the emission spectra revealed that Sr3Al2O6 phosphors doped with Eu2+, Dy3+ and Eu3+, Dy3+ showed different photoluminescence. The phosphor doped with Eu3+, Dy3+ showed an intrinsic f-f transition generated from Eu3+, with two significant emissions at 591 and 610 nm. However, the phosphor doped with Eu2+, Dy3+ revealed a broad d-f emission centering around 512 nm. After the UV source was turned off, Eu2+, Dy3+ activated Sr3Al2O6 phosphor showed excellent afterglow while Eu3+, Dy3+ activated phosphor almost showed no afterglow. Thermal simulated luminescence study indicated that the persistent afterglow of Sr3Al2O6: Eu2+, Dy3+ phosphor was generated by suitable electron traps formed by the co-doped rare-earth ions (Dy3+) within the host.  相似文献   

20.
A blue phosphor, BaMgAl10O17:Eu2+, has been synthesized in the furnace at a temperature of 500 °C by solution combustion method. The formation of the as-prepared BaMgAl10O17:Eu2+ phosphor was confirmed by the powder X-ray diffraction technique. The EPR spectrum exhibited an intense resonance signal centered at g=4.63 at 150 mT along with a number of resonances in the vicinity of g>2.0 and g<2.0. The number of spins participating in resonance (N) and the susceptibility (c) for the resonance signal at g=4.63 have been calculated as a function of temperature. The excitation spectrum of BaMgAl10O17:Eu2+ phosphor showed a strong peak near 336 nm (4f7 (8S)→5d1(t2g) transition) with a staircase like structure in the region 376-400 nm owing to crystal field splitting of the Eu2+ d-orbital. The 336 nm excitation produced a broad blue emission at 450 nm corresponding to 4f65d→4f7 transition. PL studies reveal the two emission centers one at 450 nm and the other at 490 nm in this phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号