首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate how to construct a large class of interacting quantum systems for which an exact solution may be found for the ground state wave function and ground state energy for some range of interaction parameters. It is shown that the ground state exhibits singularities in these cases, and in some simple instances the exact ground state phase diagram and critical indices are also found.  相似文献   

2.
3.
We study the correlations in the one-dimensional extended quantum compass model in a transverse magnetic field. By exactly solving the Hamiltonian, we find that the quantum correlation of the ground state of one-dimensional quantum compass model is vanishing. We show that quantum discord can not only locate the quantum critical points, but also discern the orders of phase transitions. Furthermore, entanglement quantified by concurrence is also compared.  相似文献   

4.
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Rényi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Rényi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.  相似文献   

5.
Using Feynman path integral technique estimations of the ground state energy have been found for a conduction electron interacting with order parameter fluctuations near quantum critical points. In some cases only singular perturbation theory in the coupling constant emerges for the electron ground state energy. It is shown that an autolocalized state (quantum fluctuon) can be formed and its characteristics have been calculated depending on critical exponents for both weak and strong coupling regimes. The concept of fluctuon is considered also for the classical critical point (at finite temperatures) and the difference between quantum and classical cases has been investigated. It is shown that, whereas the quantum fluctuon energy is connected with a true boundary of the energy spectrum, for classical fluctuon it is just a saddle-point solution for the chemical potential in the exponential density of states fluctuation tail.  相似文献   

6.
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit a very rich structure including states with critical and topological properties. We prove, in particular, that coherent versions of thermal states of any local 2D classical spin model correspond to such PEPS, which are in turn ground states of local 2D quantum Hamiltonians. This correspondence maps thermal onto quantum fluctuations, and it allows us to analytically construct critical quantum models exhibiting a strict area law scaling of the entanglement entropy in the face of power law decaying correlations. Moreover, it enables us to show that there exist PEPS which can serve as computational resources for the solution of NP-hard problems.  相似文献   

7.
We propose a real-space renormalization group (RG) transformation for quantum systems on a D-dimensional lattice. The transformation partially disentangles a block of sites before coarse-graining it into an effective site. Numerical simulations with the ground state of a 1D lattice at criticality show that the resulting coarse-grained sites require a Hilbert space dimension that does not grow with successive RG transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each relevant length scale makes an equivalent contribution to the entanglement of a block.  相似文献   

8.
The probability distribution of the order parameter is expected to take a universal scaling form at a phase transition. In a spin system at a quantum critical point, this corresponds to universal statistics in the distribution of the total magnetization in the low-lying states. We obtain this scaling function exactly for the ground state and first excited state of the critical quantum Ising spin chain. This is achieved through a remarkable relation to the partition function of the anisotropic Kondo problem, which can be computed by exploiting the integrability of the system.  相似文献   

9.
The entanglement entropy of a distinguished region of a quantum many-body system reflects the entanglement in its pure ground state. Here we establish scaling laws for this entanglement in critical quasifree fermionic and bosonic lattice systems, without resorting to numerical means. We consider the setting of D-dimensional half-spaces which allows us to exploit a connection to the one-dimensional case. Intriguingly, we find a difference in the scaling properties depending on whether the system is bosonic-where an area law is proven to hold-or fermionic where we determine a logarithmic correction to the area law, which depends on the topology of the Fermi surface. We find Lifshitz quantum phase transitions accompanied with a nonanalyticity in the prefactor of the leading order term.  相似文献   

10.
We derive exact results for a model of strongly interacting spinless fermions hopping on a two-dimensional lattice. By exploiting supersymmetry, we find the number and type of ground states exactly. Exploring various lattices and limits, we show how the ground states can be frustrated, quantum critical, or combine frustration with a Wigner crystal. We show that on generic lattices the model is in an exotic "superfrustrated" state characterized by an extensive ground-state entropy.  相似文献   

11.
We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudoentanglement. The observed pseudoentanglement for a small-size system already displays a singularity, a signature which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.  相似文献   

12.
We study the geometric phase of the ground state of the one-dimensional compass model in a transverse field. The critical properties of the system in terms of the geometric phase are calculated and discussed. The results show that the general character of quantum phase transitions (QPTs) in the model can be revealed by the Berry phase of the ground state. This study extends the relations between geometric phases and QPTs.  相似文献   

13.
Exchange interactions between S=1/2 sites in piperazinium hexachlorodicuprate produce a frustrated bilayer magnet with a singlet ground state. We have determined the field-temperature phase diagram by high field magnetization and neutron scattering experiments. There are two quantum critical points: Hc1=7.5 T separates a quantum paramagnet phase from a three dimensional, antiferromagnetically ordered state while Hc2=37 marks the onset of a fully polarized state. The ordered phase, which we describe as a magnon Bose-Einstein condensate (BEC), is embedded in a quantum critical regime with short range correlations. A low temperature anomaly in the BEC phase boundary indicates that additional low energy features of the material become important near Hc1.  相似文献   

14.
We construct a supersymmetric quantum mechanics in terms of two real supercharges on non-commutative space in arbitrary dimensions. We obtain the exact eigenspectra of the two- and three-dimensional non-commutative superoscillators. We further show that a reduction in the phase space occurs for a critical surface in the space of parameters. At this critical surface, the energy spectrum of the bosonic sector is infinitely degenerate, while the degeneracy in the spectrum of the fermionic sector gets enhanced by a factor of two for each pair of reduced canonical coordinates. For the two-dimensional non-commutative “inverted superoscillator”, we find exact eigenspectra with a well-defined ground state for certain regions in the parameter space, which have no smooth limit to the ordinary commutative space.Received: 24 February 2005, Revised: 21 April 2005, Published online: 22 June 2005PACS: 03.65.-w, 03.65.Fd, 11.30.Pb, 11.10.Nx  相似文献   

15.
We consider a general weak perturbation of a non-interacting quantum lattice system with a non-degenerate gapped ground state. We prove that in a finite volume the dependence of the ground state on the boundary condition exponentially decays with the distance to the boundary, which implies in particular that the infinite-volume ground state is unique. Also, equivalent forms of boundary conditions for ground states of general finite quantum systems are discussed.On leave from Institute for Information Transmission Problems, Moscow, Russia.  相似文献   

16.
We present quantum Monte Carlo results for a square-lattice S=1/2 XY model with a standard nearest-neighbor coupling J and a four-spin ring exchange term K. Increasing K/J, we find that the ground state spin stiffness vanishes at a critical point at which a spin gap opens and a striped bond-plaquette order emerges. At still higher K/J, this phase becomes unstable and the system develops a staggered magnetization. We discuss the quantum phase transitions between these phases.  相似文献   

17.
We study the behavior of two-dimensional electron gas in the fractional quantum Hall(FQH) regime in the presence of disorder potential. The principal component analysis is applied to a set of disordered Laughlin ground state model wave function to enable us to distill the model wave function of the pure Laughlin state.With increasing the disorder strength, the ground state wave function is expected to deviate from the Laughlin state and eventually leave the FQH phase. We investigate the phase tr...  相似文献   

18.
We investigate the thermal quantum and total correlations in the anisotropic XY spin chain in transverse field. While we adopt concurrence and geometric quantum discord to measure quantum correlations, we use measurement-induced non-locality and an alternative quantity defined in terms of Wigner–Yanase information to quantify total correlations. We show that the ability of these measures to estimate the critical point at finite temperature strongly depend on the anisotropy parameter of the Hamiltonian. We also identify a correlation measure which detects the factorized ground state in this model. Furthermore, we study the effect of temperature on long-range correlations.  相似文献   

19.
20.
We study the magnetic ground state in La(2/3)Ca(1/3)Mn(1-x)Ga x O3 manganites, where a quantum critical point (QCP) has been theoretically predicted. The metallic ferromagnetic ground state for low Ga doping breaks down for x > or = 0.11, an insulating state being established at low temperatures. Long-range ferromagnetism coexists with short-range magnetic correlations in the concentration range 0.11 < or = x < or = 0.145 while only the short-range correlations survive for x > or = 0.16. We discuss the implications of such a QCP to the physics of manganites and compare to other QCP systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号