首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of impedance spectroscopic study with its analytical interpretations in the framework of electric modulus formalism for Barium Nickel Tantalate Ba(Ni1/3Ta2/3)O3 (BNT), Calcium Nickel Tantalate Ca(Ni1/3Ta2/3)O3 (CNT) and Strontium Nickel Tantalate Sr(Ni1/3Ta2/3)O3 (SNT) synthesized by the solid-state reaction technique. The results of powder X-ray diffraction study reveal that BNT and SNT crystallize in cubic structure with lattice parameter a=4.07 Å and 3.98 Å respectively, whereas CNT crystallizes in monoclinic structure having lattice parameters, a=5.71 Å, b=13.45 Å and c=5.47 Å with β=118.3°. The logarithmic angular frequency dependence of the real part of complex dielectric permittivity and loss tangent as a function of temperature indicate significant dielectric relaxation in the samples, which have been explained by the Debye theory. The frequency dependence of the loss peak and the imaginary part of electrical modulus are found to obey the Arrhenius law. The relaxation mechanism of these samples is modeled by the Cole–Cole equation. This confirms that the polarization mechanism in BNT, CNT and SNT is due to the bulk effect arising in semiconductive grains. The scaling behavior of imaginary part of electric modulus M″ suggests that the relaxation describes the same mechanism at various temperatures but relaxation frequency is strongly temperature dependent. The normalized peak positions of tan δ/tan δm and M″/Mm versus log ω for BNT, CNT and SNT do not overlap completely and are very close to each other. These indicate the presence of both long-range and localized relaxation. Due to their high dielectric constant and low loss tangent, these materials may find several technological applications such as in capacitors, resonators, filters and integrated circuits.  相似文献   

2.
Nanocrystalline samples of Pb1−yLay(Ti1−xMnx)(1−y/4)O3 (PLMT) (y=0.06, x=0, 0.04, 0.07 and 0.10) were prepared by mechanical activation process (i.e., ball milling) followed by some annealing. The formation of single phase tetragonal crystal structure is confirmed by high-resolution X-ray diffraction study and by High resolution transmission electron micrographs (HRTEM), nano-scale compounds. The electrical behavior (i.e., impedance (Z) and electrical modulus (M)) of PLMT ceramics was studied by impedance spectroscopy technique in high temperature range. This study was carried out by means of the simultaneous analysis of the complex impedance (Z?) and electrical modulus (M*) functions in a wide frequency range (1 kHz-1 MHz). Impedance analysis has shown the grain and grain boundary contributions by an equivalent circuit model. Modulus analysis has provided vast information on charge transport processes. The simultaneous representation of the imaginary part of impedance and electric modulus (Z″, M″) vs. frequency revealed the localization of relaxation. The activation energy obtained from relaxation data may be attributed to oxygen ion vacancies.  相似文献   

3.
A polycrystalline rare earth double perovskite oxide, strontium cerium niobate, Sr2CeNbO6 (SCN) is synthesized by solid state reaction technique for the first time. Impedance spectroscopy is employed to determine the electrical parameters (resistance (R), capacitance (C) and relaxation time (τ)) of SCN in a temperature range from 303 to 703 K and in a frequency range from 100 Hz to 1 MHz. The spectrum of imaginary part of complex impedance (Z″) at each temperature exhibits one relaxation peak. The modified Cole-Cole equation is used (experimental data is fitted with this model) to describe these relaxation peaks. Scaling behaviour of Z″ suggests that the relaxation describes the same mechanism at the entire temperature range. Impedance data of SCN that have capacitive and resistive components is represented by Nyquist diagram. The experimental impedance data is fitted using equivalent RC circuit at various temperatures. The grain conduction and τ follow an Arrhenius law associated with activation energy 0.87 and 0.88 eV, respectively.  相似文献   

4.
Lanthanum-substituted bismuth titanate, Bi3.5La0.5Ti3O12 (i.e., x=0.5 in Bi4−xLaxTi3O12), thin films have been grown on Pt/Ti/SiO2/Si substrates using pulsed laser deposition. The frequency dependence of the real part ε′(ω) and the imaginary part ε″(ω) of the dielectric constant has been studied. The ε′(ω) does not show any sudden change within the frequency range of 102-106 Hz. In contrast, the ε″(ω) shows a large dispersion as frequency decreases. The observed relaxation behavior in ε″(ω) can be explained in terms of a migration of oxygen vacancies in (Bi2O2)2+ layers, not in Bi2Ti3O10 perovskite layers.  相似文献   

5.
The dielectric properties and loss of Bi1.5ZnSb1.5O7 a poor-semiconducting ceramic were investigated by impedance spectroscopy, in the frequency range from 5 Hz to 13 MHz. Electric measurements were performed from 100 to 700 °C. Pyrochlore type phase was synthesized by the polymeric precursor method. Dense ceramic with 97% of the theoretical density was prepared by sintering via constant heating rate. The dielectric permittivity dependence as a function of frequency and temperature showed a strong dispersion at frequency lower than 10 kHz. The losses exhibit slight dependence with the frequency at low temperatures presenting a strong increase at temperatures higher than 400 °C. A decrease of the loss magnitude occurs with increasing frequency. Relaxation times were extracted using the dielectric functions Z″(ω) and M″(ω). The plots of the relaxation times τZ and τM as a function of temperature follow the Arrhenius law, where a single slope is observed with activation energy values equal to 1.38 and 1.37 eV, respectively.  相似文献   

6.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

7.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

8.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

9.
The [TMA]2Zn0.5Cu0.5Cl4 hybrid material was prepared and its dielectric spectra were measured in the 10−1 Hz-106 Hz frequency range and 200-305 K temperature interval. The dielectric permittivity showed a ferroelectric-paraelectric phase transition at 293 K. Double relaxation peaks are observed in the imaginary part of the electrical modulus, suggesting the presence of grain and grain boundary in the sample. The frequency dependent conductivity was interpreted in term of Jonscher's law: σ(ω)=σdc+n. The temperature dependent of the dc conductivity (σdc) was well described by the Arrhenius equation: σdcT=σo×exp(−Ea/kT).  相似文献   

10.
In this paper Mössbauer, Raman and dielectric spectroscopy studies of BiFeO3 (BFO) ceramic matrix with 3 or 10 wt% of Bi2O3 or PbO added, obtained through a new procedure based on the solid-state method, are presented. Mössbauer spectroscopy shows the presence of a single magnetically ordered phase with a hyperfine magnetic field of 50 T. Raman spectra of BFO over the frequency range of 100-900 cm−1 have been investigated, at room temperature, under the excitation of 632.8 nm wavelength in order to evaluate the effect of additives on the structure of the ceramic matrix. Detailed studies of the dielectric properties of BiFeO3 ceramic matrix like capacitance (C), dielectric permittivity (ε) and dielectric loss (tan δ), were investigated in a wide frequency range (1 Hz-1 MHz), and in a temperature range (303-373 K). The complex impedance spectroscopy (CIS) technique, showed that these properties are strongly dependent on frequency, temperature and on the added level of impurity. The temperature coefficient of capacitance (TCC) of the samples was also evaluated. The study of the imaginary impedance (−Z″) and imaginary electric modulus (M″) as functions of frequency and temperature leads to the measurement of the activation energy (Eac), which is directly linked to the relaxation process associated with the interfacial polarization effect in these samples.  相似文献   

11.
Structure and electrical conductivity of Bi14WO24 as a function of temperature have been examined by X-ray and neutron powder diffraction, a.c. impedance spectroscopy and differential thermal analysis. The room temperature structure was successfully refined using a monoclinic subcell model in space group I2/m. However, additional reflections in the neutron data are consistent with a large supercell of dimensions a = 17.3780(1) Å, b = 17.3891(1) Å, c = 26.1785(2) Å and β = 90.270(1)°, as previously proposed. Transitions to tetragonal and cubic phases are observed at ca. 35 °C and 780 °C, respectively. The structure of the high temperature polymorph is confirmed as a fully disordered δ-Bi2O3 type phase. Analysis of the defect structure is consistent with a predominantly tetrahedral environment for tungsten, as seen at low temperatures. The conductivity behaviour is correlated with the appearance of the δ-phase at high temperatures and exhibits a value of 0.97 S cm− 1 at 800 °C.  相似文献   

12.
This paper reports the dielectric and impedance characteristics of ferroelectric SrBi2Nb2O9 (SBN) ceramics in the 100 Hz-1 MHz frequency range at various temperatures (300-823 K). A strong low frequency dielectric dispersion (LFDD) associated with an impedance relaxation has been found to exist in these ceramics in the temperature range 573-823 K. The Z″ of the AC complex impedance showed two distinct slopes in the frequency range 100 Hz-1 MHz suggesting the existence of two dispersion mechanisms. This non-ideal behavior has been explained on the basis of the expression, Z*=R0/(1+(/ω1)m+(/ω2)n) [J. Phys. Chem. Solids 53 (1992) 1] where ω1 and ω2 characterize the lattice response and the charge carrier behavior, respectively. The exponents m and n were obtained from the curve fitting. The exponent n was found to exhibit a minimum at the Curie temperature, Tc (723 K) whereas the m was temperature independent.  相似文献   

13.
In order to develope and understand the phenomena involved in producing advanced materials, a rare earth double perovskite oxide calcium cerium niobate, Ca2CeNbO6 (CCN) is synthesized for the first time. The x-ray diffraction pattern of CCN at room temperature (300K) shows orthorhombic perovskite structure, with the lattice parameters, a=9.36Å, b=6.61Å and c=5.88Å and α=β=γ= 90°. A scanning electron micrograph shows the formation of grains with average size ∼2μm. Impedance spectroscopy and Fourier transform infrared spectroscopy are applied to investigate the dielectric and optical properties of CCN. The frequency-dependent electrical data are analyzed in the framework of the conductivity and modulus formalisms. The experimental data of real part of dielectric permittivity (ε′) and imaginary part of electric modulus (M″) are fitted with Davidson-Cole equation to explore the idea of dielectric relaxation (conduction) mechanism in CCN. The frequency-dependent conductivity spectra follow a power law. The scaling behaviour of imaginary electric modulus (M″) suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

14.
We demonstrated that La2/3Sr1/3MnO3 sintered manganite could exhibit a magnetoreactance ΔX/X0 of −25.5% at 100 kHz, a giant magnetoimpedance ΔZ/Z0 of −20% at 1-2 MHz and a giant AC magnetoresistance ΔR/R0 of −39.3% at 5 MHz under a very low field of 300 Oe at room temperature, whereas the DC magnetoresistance Δρ/ρ0 was −3.95% under H=10 kOe and only about −0.18% under H=300 Oe. Large field-induced change of real and imaginary circular permeabilities (Δμ?/μ?(0) and Δμ?/μ?(0)) were obtained for La2/3Sr1/3MnO3 sintered manganite. The giant magnetoreactance (giant magneto-inductive effect) at very low frequencies originates from the field induced change of transverse permeability. At 100 kHz under H=300 Oe, La2/3Sr1/3MnO3 sintered manganite has Δμ?/μ?(0)=−25.8% and Δμ?/μ?(0)=−10.9%. The values of ΔR/R0 and ΔZ/Z0 are very small under 300 Oe at 100 kHz. The giant magnetoimpedance at high frequencies mainly originates from the large transverse permeability change induced by DC magnetic fields, via the penetration depth. Under H=300 Oe, La2/3Sr1/3MnO3 sintered manganite presents values of Δμ?/μ?(0)=−24.9%, Δμ?/μ?(0)=−49.8% at 1 MHz, and Δμ?/μ?(0)=−21.2%, Δμ?/μ?(0)=−58.2% at 5 MHz.  相似文献   

15.
The synthesis and crystal structure of the bis (3-dimethylammonium-1-propyne) pentabromobismuthate(III) salt are given in the present paper. After an X-ray investigation, it has been shown that the title compound crystallizes at 298 K in a centrosymmetric monoclinic system, in the space group C2/c with the following lattice parameters a=12.9034(3) Å, b=19.4505(6) Å, c=8.5188(2) Å, β=102.449(2). Not only were the impedance spectroscopy measurements of (C5H10N)2BiBr5 carried out from 209 Hz to 5 MHz over the temperature range of 318 K–373 K, but also its ac conductivity evaluated. Besides, the dielectric relaxation was examined using the modulus formalism. Actually, the near values of activation energies obtained from the impedance and modulus spectra confirms that the transport is of an ion hopping mechanism, dominated by the motion of the H+ ions in the structure of the investigated material.  相似文献   

16.
The dispersion curves of the dielectric response in single crystal NH4H2PO4 were obtained in the radio frequency range and below the high-temperature transition at Tp−160 °C. The results reveal dielectric relaxation at low frequency, which is about 105 Hz at 70 °C, and it shifts to higher frequencies (∼3×106 Hz) as the temperature increases. The relaxation frequency was determined from the peak obtained in the imaginary part of the permittivity as well as from the derivative of the real part of the permittivity. The activation energy Ea=0.55 eV, obtained from the relaxation frequency is very close to that derived from the dc conductivity. We suggest that this dielectric relaxation could be due to the proton jump and phosphate reorientation that cause distortion and change the local lattice polarizability inducing dipoles like   相似文献   

17.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

18.
In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure-broadening coefficients of 368 ν2 transitions with quantum numbers as high as J″ = 20 and K = 16, where K″ = K′ ≡ K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about −0.0003 to −0.0094 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressure-shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D, are also in reasonable agreement with the scattered experimental data (20% in most cases).  相似文献   

19.
The polycrystalline samples of Pb(Zr0.65−xMnxTi0.35)O3 (PZMT) (x=0, 0.05, 0.10, 0.15) were prepared by a high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of manganese (Mn) on the electrical behavior (complex impedance Z*, complex modulus M*, electrical conductivity and relaxation mechanisms) of the PZMT systems have been carried out by a nondestructive complex impedance spectroscopy (CIS) technique at 400 °C. The Nyquist plots suggest that the grains only are responsible in the conduction mechanism of the materials. The occurrence of single arc in the complex modulus spectrum of all the compositions of Mn confirms the single-phase characteristics of the PZMT compounds, and also confirms the presence of non-Debye type of multiple relaxation in the material.  相似文献   

20.
Solid solutions of bismuth layered (Bi2O3)(BaxMo1−xO3) (0.2≤x≤0.8, x is in step of 0.2) ceramics were prepared by conventional solid-state reaction of the constitutive oxides at optimized temperatures with a view to study its electrical properties. Powder X-ray diffraction has been employed for physical characterization and an average grain size of ∼16 to 22 nm was obtained. XRD study reveals the single phase structure of the samples. Dielectric properties such as dielectric constant (ε′), dielectric loss (tanδ) and ac electrical conductivity (σac) of the prepared ceramics sintered at various temperatures in the frequency range 101–107 Hz have been studied. A strong dispersion observed in the dielectric properties shows the relaxor type behavior of the ceramic. The presence of maxima in the dielectric permittivity spectra indicates the ferroelectric behavior of the samples. Impedance plots (Cole–Cole plots) at different frequencies and temperatures were used to analyze the electric behavior. The value of grain resistance increases with the increase in Ba ion concentration. The conductivity mechanism shows a frequency dependence, which can be ascribed to the space charge mainly due to the oxygen vacancies. The relaxation observed for the M″ (ω) or Z″ (ω) curves is correlated to both localized and long range conduction. A single ‘master curve’ for the normalized plots of all the modulus isotherms observed for a given composition indicates that the conductivity relaxation is temperature independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号