首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a high-repetition-rate, high-peak-power laser diode (LD) pumped burst-mode 1064 nm laser from a Nd:YVO4/Nd:YAG master oscillator power amplifier. 10–100 kHz pulse burst in a duration up to 2 ms is achieved in LD end-pumped Nd:YVO4 acousto-optically Q-switched laser. After amplification with LD side-pumped Nd:YAG rod amplifiers, the single pulse energy reaches 73 mJ in 10 kHz pulse burst laser with a peak power of 7.8 MW.  相似文献   

2.
We present a compact high-peak-power, high-repetition-rate burst-mode laser from a master-oscillator power amplifier (MOPA) at 1064 nm for laser-based measurement applications. The oscillator is an 808 nm pulsed laser diode side-pumped acousto-optical (A-O) Q-switched Nd:YAG laser at repetition rates ranging from 10–100 kHz, producing a pulse train with a pulse number of 2–25. The maximum output energy of the oscillator is 15.6 mJ at 10 kHz, whereas it is 1.7 mJ at 100 kHz. After twostage amplifiers, a single-pulse energy of 85.2 mJ with a pulse-width of 14.5 ns is achieved at 10 kHz, which produces a peak power of 6.1 MW. At 100 kHz, the total burst energy reaches 220 mJ with a single-pulse energy of 8.8 mJ in the pulse burst laser system.  相似文献   

3.
We demonstrate for the first time a Cr4+:YAG passively Q-switched 1066 nm pulse-burst laser under 879 nm direct pump with a novel Nd:Gd0.69Y0.3NbO4 crystal. The output laser characteristics with different pump repetition rates and different Cr4+:YAG initial transmission are studied. Without the Cr4+:YAG, we obtain a maximum output energy of 2.55 mJ at an absorbed pump energy of 5.79 mJ with the highest 48% slope efficiency. The pulse-burst laser contains a maximum of 7 pulses for a Cr4+:YAG initial transmission of 55% and a pump repetition rate of 1 kHz. The single-pulse energy and narrowest pulse width reach 160 μJ and 5.5 ns at 38.2 kHz, with a peak power of 32 kW.  相似文献   

4.
An output pulse energy of 17.3 mJ has been achieved with a diode-pumped Yb:CaF2 regenerative laser amplifier. The bandwidth of the output pulse spectrum was 7.3 nm, being seeded with femtosecond pulses stretched to 2.2 ns. In cw operation a tuning range of 80 nm has been observed. A maximum pulse energy of 44 mJ at a repetition rate of 1 Hz has been obtained in Q-switched mode. The laser damage threshold of a Yb:CaF2 crystal has been determined at a wavelength of 1064 nm and a pulse duration of 10 ns. PACS 42.55.Ah; 42.55.Xi; 42.70.Hj  相似文献   

5.
We improve the performance of an acousto-optical Q-switched Nd:YAG 946 nm laser using a convex–plane cavity. We obtain the highest output average power of 2.3 W with a pulse width of 15.3 ns in a 10 kHz 946 nm laser with a convex–plane cavity. The maximum peak power 15.0 kW is about three times higher than that in a plane–plane cavity. Also we investigate the output performances of the pulsed 946 nm laser with the convex–plane cavity at 20 and 50 kHz.  相似文献   

6.
We report a laser-diode-end-pumped acousto-optical Q-switched double-end diffusion-bonded Nd?:?YVO4 self-Raman laser at 1176 nm. The maximum average output power at the first-Stokes wavelength of 1176 nm was obtained to be 3.1 W at the incident pump power of 25 W and the repetition rate of 90 kHz, with the corresponding optical conversion efficiency of 12.4%. The shortest pulse width, the maximum pulse energy and the highest peak power were measured to be 5 ns, 42 μJ and 7.5 kW, respectively.  相似文献   

7.
A Q-switched high efficient Ho:YAlO3 (Ho:YAP) laser pumped by a diode-pumped Tm:YLF laser at room-temperature is realized. The maximum output energy reaches 1.58 mJ under the repetition frequency of 5 kHz, when the incident pump power is 15.6 W. The pulse width is 22 ns. The wavelength is 2118 nm when the transmission of output coupler is 30%. The beam quality factor is M 2 ∼ 1.39 measured by the traveling knife-edge method.  相似文献   

8.
A miniature tunable TEA CO2 laser using isotope 13C16O2 as the active medium is developed to extend the spectral range of CO2 lasers for further application. The optimization of the energy parameters of the tunable TEA 13C16O2 laser and the same laser using 12C16O2 are studied. When a gas mixture (13C16O2: N2: He = 1: 1: 3) at a total pressure of 6.4 × 104 Pa is used, the TEA 13C16O2 laser of a 45-cm3 active volume obtains 51 emission lines in the [0001–1000] and [0001–0200] bands. The maximum pulse energy of the TEA 13C16O2 laser is about 357 mJ. The same laser using the conventional gas mixture (12C16O2: N2: He = 1: 1: 3) at a pressure of 6.66 × 104 Pa is measured to obtain 69 laser emission lines and the maximum pulse energy of laser radiation is about 409 mJ.  相似文献   

9.
A diode-pumped Q-switched and injection-seeded single-frequency laser, generating tunable laser radiation at 935 nm, is presented. Using Nd:YGG (Y3Ga5O12) as the active medium, the laser that was developed to serve as a transmitter for water–vapor lidar measurements. The configuration consists of a stable resonator in rod geometry that is injection seeded by a narrowband diode laser and stabilized by the ramp-and-fire technique. Energy scaling was done in a power amplifier in slab geometry. Both oscillator and amplifier crystal were diode pumped at 806 nm. More than 30 mJ pulse energy at 100 Hz repetition rate with a beam propagation factor of M2<1.4 and pulse duration of 52 ns in single-frequency mode were generated. To our knowledge this is the first direct generation of 935 nm Q-switched pulses from Nd:YGG suitable for water–vapor measurements. The reported results show great promise of this laser in applications where high efficiency and reduced complexity is indispensable, such as for spaceborne or airborne water–vapor lidar instruments.  相似文献   

10.
MoS2 quantum dots (QDs) have been obtained in colloidal suspensions by 532 nm laser ablation (7 ns fwhp/pulse, 50 mJ/pulse) of commercial MoS2 particles in acetonitrile. High-resolution transmission electron microscopy images show a lateral size distribution from 5 to 20 nm, but a more homogeneous particle size of 20 nm can be obtained by silica gel chromatography purification in acetonitrile. MoS2 QDs obtained by laser ablation are constituted by 3–6 MoS2 layers (1.8–4 nm thickness) and exhibit photoluminescence whose λPL varies from 430 to 530 nm depending on the excitation wavelength. As predicted by theory, the confinement effect and the larger periphery in MoS2 QDs increasing the bandgap and having catalytically active edges are reflected in an enhancement of the photocatalytic activity for H2 generation upon UV–Vis irradiation using CH3OH as sacrificial electron donor due to the increase in the reduction potential of conduction band electrons and the electron transfer kinetics.  相似文献   

11.
The crystal of Nd3+:Sr6YSc(BO3)6 with dimensions of O 19×42 mm3 was grown by the Czochralski method. It’s spectral and laser properties have been investigated. The absorption cross section is 1.47×10-20 cm2 with a FWHM 12.0 nm at 807 nm, the emission cross section is 1.57×10-19 cm2 at 1060 nm, and the fluorescence lifetime is 76 μs at room temperature. The maximum laser output is 25.7 mJ at 1.06 μm pumped by a single Xenon flash lamp and the overall and average slope efficiencies are 0.12% and 0.09%, respectively. The laser energy threshold value is 1.28 J. PACS 42.55.Rz; 42.70.Hj; 78.20.-e  相似文献   

12.
We originally demonstrate the use of an AlGaInAs periodic quantum-well absorber to achieve a quasi-continuous-wave (QCW) diode-pumped passively Q-switched Nd:YVO4 laser with an intracavity optical parametric oscillator (OPO). With a diode-pumping energy of 35 mJ, the output pulse energy and the pulse width at 1573 nm are found to be 1.58 mJ and 26 ns, respectively. The pulse repetition rate can be up to 100 Hz with the overall OPO beam quality M2 factor to be better than 1.5.  相似文献   

13.
This work reports a diode-side-pumped and passively Q-switched Nd:YLiF4 (YLF) laser operating at 1053 nm using a new laser resonator concept. Very stable pulses of 1 mJ energy with less than 10 ns pulse duration are obtained at 1 kHz repetition rate in a very simple, compact, and robust cavity that uses a double bounce configuration to achieve TEM00 operation.  相似文献   

14.
We report on the development and the demonstration of a two-wavelength single-frequency laser oscillator based on Ho:YLF crystal. This laser is especially suitable for application as a transmitter in differential absorption lidar (DIAL)/integrated path differential absorption (IPDA) measurements of atmospheric carbon dioxide (CO2) using the R30 CO2 absorption line at 2,050.967 nm. The oscillator consists in a fiber-coupled and free-space solid-state hybrid system and can be used in high-energy middle-rate or moderate-energy high-rate configurations. The latter produced On and Off sequentially single-frequency laser pulses with 13 mJ of energy at a repetition rate of 2 kHz and pulse duration of 42 ns. The pulse energy and frequency stabilities are specially documented in free-running, single-frequency and two-frequency seeding single-mode operations. Standard deviation is 7.7 % for pulse energy and 2 MHz for frequency stability for the two-wavelength seeding operation. Allan variance plot shows that frequency fluctuations are reduced below 70 kHz for 10 s of averaging which is suitable for accurate CO2 DIAL or IPDA measurements.  相似文献   

15.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

16.
Laser annealing experiments were performed in order to increase the concentration of electrically active manganese in the layers of A3B5: Mn semiconductors. An LPX-200 KrF excimer laser with a wavelength of 248 nm and a pulse duration of ~30 ns was used. It is shown experimentally that at a pulse energy of an excimer laser of >230 mJ/cm2, the hole concentration in GaAs: Mn layers increases to 3 × 1020 cm–3. The negative magnetoresistance and the anomalous Hall effect with a hysteresis loop for annealed GaAs: Mn samples remain the same up to 80–100 K. Similar changes are observed for InAs: Mn layers as a result of laser annealing.  相似文献   

17.
A passively Q-switched a-cut Nd:YVO4 self-stimulating Raman laser using a Cr:YAG saturable absorber has been demonstrated for the first time. The maximum average output power of the self-Raman laser at 1176 nm is 347 mW at the incident pump power of 10 W with a pulse repetition frequency (PRF) of 66 kHz. The pulse width, pulse energy of the 1176 nm are found to be 10 ns and 5.6 μJ. The conversion efficiency from diode laser input power to Raman output power is 3.47%.  相似文献   

18.
J. Ma  L. Guo  B. Xiong  X. Yan  S. Zhang  R. Chen  W. Zhao  X. Lin  J. Li  Q. Duanmu 《Laser Physics》2010,20(6):1350-1353
High efficiency, TEM00 mode, high repetition rate laser pumped by 887 nm is reported. 20.1 W output laser emitting at 1064 nm is achieved in a 0.3 at % Nd-doped Nd:YVO4, which absorbs pumping light of 30.7 W at 887 nm. The opto-optic efficiency and the slope efficiency are 65.5 and 88.5%, respectively. The stable Q-switching operation worked well at 100 kHz and the beam quality is near diffraction-limit with M2 factor measured as M2 ≈ 1.2. And the pulse waveform is analyzed in this paper.  相似文献   

19.
The differences between the performances of electro-optical (EO) and acousto-optical (AO) Q-switched, diode pumped Nd:GdVO4 laser at high repetition rates were detailed in this paper. The results revealed that EO Q-switch was more favorable to obtain short pulse width and high peak power laser than AO Q-switch under high repetition rate operation. The minimum pulse widths at 100 kHz were 20.2 ns under EO operation and 28.7 ns under AO operation, corresponding to peak powers of 3.1 kW and 2.2 kW, respectively. The corresponding values at 10 kHz were 5.3 ns, 9.0 ns and 77.4 kW, 45.6 kW, respectively.  相似文献   

20.
In this paper, we report investigations of the electron emission from pure Zn cathodes irradiated by UV laser pulses of 23 ns (full-width at half-maximum) at a wavelength of 248 nm (5 eV). The metal cathodes were tested in a vacuum photodiode chamber at 10?5 Pa. They were irradiated at normal incidence and the anode–cathode distance was set at 3 mm. The maximum applied accelerating voltage was 18 kV, limited by the electrical breakdown of the photodiode gap. Under the above experimental conditions, a maximum applied electric field of 6 MV/m resulted. In the saturation regime, the measured quantum efficiency value increased with the accelerating voltage due to the plasma formation. The highest output current was achieved with 14 mJ laser energy, 18 kV accelerating voltage and its value was 12 A, corresponding to a global quantum efficiency (GQE) approximately of 1×10?4. The temporal quantum efficiency was 1.0×10?4 at the laser pulse onset time and 1.4×10?4 at the pulse tail. We calculated the target temperature at the maximum laser energy. Its value allowed us to obtain output pulses of the same laser temporal profile. Tests performed with a lower laser photon energy (4.02 eV) demonstrated a GQE of two orders of magnitude lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号