首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A different silicon photonic wire waveguide is proposed, which uses multiple thin cladding layers in order to reduce the index contrast between core and cladding interface. The reduced index contrast in the proposed waveguide has led to reduction in the scattering losses by 37% as compared to silicon wire waveguide for 400 nm × 220 nm waveguide dimension. The proposed waveguide has shown significant reduction in bending losses. It offers the bending loss of 0.0118 dB at the radius of 1 μm and 0.0063 dB for a radius of 2 μm at 1.55 μm wavelength as compared to 0.086 and 0.013 dB at the radius of 1 and 2 μm, respectively, offered by silicon photonic wire waveguide at 1.5 μm wavelength. The use of polymer material as top cladding layer resulted in decreasing the sensitivity of effective index against temperature for the designed waveguide by a factor of 2 as compared to silicon wire waveguide.  相似文献   

2.
The microwave-absorbing performances of carbonyl iron powder / silver core–shell composite particles are studied on the basis of the electromagnetic scattering theory and the energy conservation law. In addition, a calculation method for reflection loss of the carbonyl iron powder / silver core–shell composite particles with microwave is proposed. The calculated reflection loss of the carbonyl iron powder / silver core–shell composite particles is compared with the experimental results. The findings show that the trend of reflection loss of the carbonyl iron powder / silver composite particles can be predicted which can subsequently provide a relevant reference for future experiment and calculation of the absorbing mechanism of electromagnetic wave-microscopic carbonyl iron powder / silver core–shell composite particles.  相似文献   

3.
Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy-N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.  相似文献   

4.
In this paper, we have proposed a new type of quasi photonic crystal fiber (PCF) with a silicon nano crystal core. This structure can be used to sense aqueous analysis over a wavelength range of 1.00?µm to 3.00?µm. The properties of this structure are simulated using the vector-finite element method (VFEM) employing a boundary condition. The proposed model provides a significant effect of birefringence and a very high nonlinear coefficient for two different fundamental modes, which are obtained by adjusting the size of the silicon nano crystal filled ellipse core. This provides a high nonlinearity of 4.2?×?105 W?1Km?1 and a birefringence of ? 3.2?×?10?1 at the wavelengths 1.00?µm and 3.00?µm, respectively. Some others properties, such as the effective area, scattering loss, confinement loss, numerical aperture (NA)and power fraction are also analyzed to measure the performance of this structure. The proposed model is useful for sensing and biomedical imaging applications. The proposed structure may also find extensive applications in optical communication and sensor systems.  相似文献   

5.
A novel high-birefringence hollow-core anti-resonant THz fiber is proposed in this paper. This fiber has a simple structure which consists of only ten Topas tubes. High birefringence is achieved by introducing two large tubes. The first two resonant frequencies are 1.44 and 2.88 THz by fixing tube thickness at 0.09 mm, which makes two low-loss transmission windows exist in the frequency range from 0.8 to 3.0 THz. The lowest loss is 2.10 dB/m occurring at 1.2 THz in the first transmission window and 1.68 dB/m at 2.34 THz in the second transmission window. By optimizing the structure parameters, high birefringence above 7 × 10?4 in the frequency range from 1.0 to 1.24 THz are obtained. The highest birefringence is up to 8.7 × 10?4 at 1.04 THz. Birefringence can be further increased to the order of 10?3 by adjusting the structure parameters at the cost of loss increasing and the bandwidth decreasing. In addition, bent performance of this fiber is also discussed. In addition, this fiber can keep good performance when it is bent for x-direction. At the bend radius of 15 cm, the loss and birefringence has a more slightly change in the first transmission window than the second transmission window. The first transmission window own much better bent-insensitive characteristics.  相似文献   

6.
We report an improved version of a spot-size converter (SSC) consisting of a silicon nanowire evanescently coupled to a phase-matched Poly-Si multilayer structure. With wider transversal dimensions the multilayer structure expands the mode significantly thus increasing the coupling efficiency with the conventional single-mode fiber. Detailed optimization process of a 17-layer based SSC is discussed and its coupling efficiency with a high-NA fiber of radius 2 μm is obtained as 98% providing only 0.087 dB loss. Vertical alignment tolerance between the optimized SSC and a high-NA fiber of radius 2 μm is also shown. This novel design does not consist of a taper and can be fabricated by using CMOS compatible process. It has a short device length and more relaxed alignment tolerances with the fiber. Full-vectorial and computationally efficient finite element method and the least squares boundary residual method have been used for the analysis and optimization of the proposed structure.  相似文献   

7.
Influence of the defective cylinder air holes of negative-refraction photonic crystal (NR-PC) lens on the performance of lightwave target detection and imaging are studied with finite-difference time-domain method in the paper. Numerical simulations indicate that significant enhancement of the scattering signal can be obtained using the NR-PC flat lens; consequently, great improvement of the refocusing gain as well as the imaging resolution will be provided. We further study the effect on target detection and imaging using the defective NR-PC flat lens. Using dynamic scanning scheme, it is found that its focusing resolution is better than the non-defective lens. We can also get better resolution by appropriately decreasing the radius of the defective cylinder (R = 0.3a). In conclusion, appropriate radius of the defective cylinder (R = 0.3a) will provide better image resolution.  相似文献   

8.
In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 ± 2.5 and 41 ± 15 nm (size range: 15?C87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1?C3.5. TMNs were non-toxic to the cells below the 30 ??g (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.  相似文献   

9.
Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 μm as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm) high-resolution diode laser spectroscopy of confined oxygen molecules. A simple method for quantitative estimation of the pore size is outlined and shown to produce results in agreement with mercury intrusion porosimetry. At the same time, the need for improved understanding of wall collision broadening is emphasized.  相似文献   

10.
《Nuclear Physics A》1998,637(4):559-575
We use the world data on electron-deuteron elastic scattering to determine the deuteron structure functions and the charge rms radius. Coulomb distortion is included using second-Born approximation. We find a radius of 2.130 ± 0.003 ± 0.009 fm (±stat., ±syst.), which agrees with the information obtained from nucleon-nucleon scattering and from optical isotope shifts.  相似文献   

11.
Microwave absorbing materials composed of ordered mesoporous carbon (OMC) as absorbent and paraffin as matrix were prepared, and their electromagnetic and microwave absorbing properties could be tuned by changing the weight fraction of OMC at 2–18 GHz. The minimum reflection loss (RL) value reached ?9.3 dB at 8.0 GHz and the absorption range with RL lower than ?5 dB was obtained at 5.8–14.4 GHz for a single-layer absorber filled with 1.98 wt.% OMC at 3.0 mm. If a double-layer structure was adopted, the total thickness of the absorber could be reduced below 2.0 mm and the effective absorption range (RL<?10 dB) could be obtained at 8.9–14.3 GHz with a minimal RL of ?28.5 dB at 10.6 GHz. This work demonstrated that dielectric composites could be used as excellent absorbers by adopting reasonable multilayer structures.  相似文献   

12.
We report synoptically an investigation of design, fabrication and characterization of a new all-solid photonic bandgap fiber. By introducing an index depressed layer around a high index core in every unit cell of photonic crystal cladding, a novel all-solid bandgap fiber is predicted to obtain low confinement and bend losses within low-order bandgaps. After optimizing the structure parameters, we fabricate a batch of rods used for cladding cells, select a pure-silica rod for core cell and an inner-hexagonal jacket tube. We demonstrate an all-solid bandgap fiber with the transmission loss as low as 2 dB/km at 1,310 nm and a bandwidth of over 700 nm within the first bandgap. The guiding properties are also measured, respectively, such as transmission spectrum, attenuation spectrum, bend loss, mode field intensity profile, and chromatic dispersion.  相似文献   

13.
Hydrogen is an element of fundamental importance for energy but hard to quantify in bulk materials. Neutron radiography was used to map in situ loss of elemental hydrogen from beech tree wood samples during pyrolysis. The samples consisted of three wood cylinders (finished dowel or cut branch) of approximately 1 cm in length. The samples were pyrolyzed under vacuum in a furnace vessel that was placed inside a cold neutron imaging beamline using a temperature ramp of 5 °C/min from ambient up to 400 °C. Neutron radiographs with exposures of 30 s were sequentially recorded with a charge-coupled device over the course of the experiment. Relative absorbance/scattering of the neutron beam by each sample was based on intensity (or brightness) values as a function of pixel position. The much larger neutron cross section for hydrogen compared to carbon and oxygen enables almost direct conversion of neutron attenuation into sample hydrogen content for each time step during the pyrolysis experiment. Target and vessel temperatures were recorded concurrently with collection of the radiographs so that changes could be directly correlated to different states of pyrolysis. The most visible change appeared at the initial phase of the 400 °C plateau as evidenced by strong hydrogen loss and primarily diametric shrinking of the samples. The loss of elemental hydrogen between initial and final states of pyrolysis was estimated to be about 70%.  相似文献   

14.
A new 90° light path conversion device incorporating a core element and a hybrid comb-clad that combines air and polymer components is proposed for optical interconnection. The device has a large refractive index difference (Δn) between the core and the hybrid comb-clad, which enables a small curvature radius. Extension to an array of M layers × N channels is straightforward. Ray-tracing simulations indicate that the bending loss is as small as 0.21 dB at the small curvature radius of 0.25 mm. Prototypes were fabricated by the photomask transfer method from two types of UV-curable resin; these prototypes exhibited 90° bending loss of 1.65 dB at a core curvature radius of 0.25 mm.  相似文献   

15.
This study proposes a method for manufacturing a whispering gallery mode (WGM) optical fiber probe used for measuring glucose. The principle of the WGM optical fiber probe consists of the bending interference that occurs between the core mode and cladding mode. 3D printing technology was used to create a mold for the optical fiber sensor so that the bent optical fiber sensor was fixed within the mold to ensure a stable bend radius. This method of fabrication allows for easier installation and replacement of the resulting optical fiber compared to WGM optical fiber sensors fabricated by traditional methods. The results of the concentration test showed that as the glucose aqueous solution concentration increased from 0 to 10%, the wavelength was red shifted and the transmission loss gradually increased. At a bend radius of 3.1 mm and an etching diameter of 46 μm, the wavelength sensitivity was 1.475 nm/% and the R-squared value was 0.983, indicating an extremely high sensitivity. These results confirm that the WGM optical fiber probe created in this study can be used to measure glucose concentrations with high sensitivity, and that it is relatively easy to manufacture, install, and replace. Therefore, the proposed WGM optical fiber probe exhibits good performance and is suitable for use as a glucose concentration sensor.  相似文献   

16.
Abstract

The temperature and concentration dependences of the physicochemical properties of aqueous solutions of the diblock copolymer P43E312 (P = oxypropylene, E = oxyethylene) with solubilized liquid crystal (LC) have been studied using static and dynamic light scattering (SLS and DLS), small‐angle x‐ray scattering (SAXS), and ultraviolet (UV) spectroscopy. Relaxation time distributions from DLS obtained from inverse Laplace transformation of intensity correlation functions are multimodal, where the two fastest modes are attributed to diblock copolymer unimers and micelles, respectively. The remaining modes at longer decay times reflect the presence of free LC with hydrodynamic radii (R h) of hundreds of nm. The R h of both unimers and micelles were independent of temperature (T), while the hydrodynamic virial coefficient k D and the second virial coefficient, A 2, decreased with increasing T. The UV spectroscopy measurements showed that there is a reduction in the amount of solubilized LC per gram of copolymer (c s) as the copolymer concentration (c p) is increased. The SAXS results agree well with a model of a homogeneous system of polydisperse interacting hard spheres. In solution, both the effective micellar radius of interaction (R eff) and the hard‐sphere micellar radius (R¯s) increase in the presence of LC due to solubilization of the latter in the hydrophobic micellar core. Both SAXS and SLS results show that intermicellar interactions become important at c p > 1% (w/w) at high temperatures [T > the critical micelle temperature (cmt)].  相似文献   

17.
娄淑琴*  鹿文亮  王鑫 《物理学报》2013,62(4):44201-044201
研制出一种新型抗弯曲大模场面积石英光子晶体光纤. 利用光子晶体光纤结构设计的灵活性, 通过规划缺陷的位置及空气孔的尺寸, 实现了大模场面积单模及低弯曲损耗特性.应用建立的实际光子晶体光纤特性分析模型, 研究了研制光纤的模式特性和弯曲特性, 在波长1064 nm处, 平直状态下光纤的模场面积可以达到2812 μm2, 基模限制损耗为0.00024 dB/m, 高阶模限制损耗高于1.248 dB/m. 基模和高阶模之间的高传输损耗差, 保证了在获得大模场面积的同时实现单模传输. 弯曲半径和弯曲方向角所带来弯曲损耗变化的研究结果显示, 即使在弯曲半径小到5 cm时, 弯曲损耗也在10-3 dB/m量级以下, 而且在弯曲半径为30 cm时光纤可承受的弯曲方向角范围扩展至-60°–60°. 研制的光纤具有良好的低弯曲损耗特性, 可有效解决非对称结构所带来的光纤弯曲特性对弯曲方向角敏感的问题. 该光纤在高功率光纤激光器、放大器及高功率传输等技术领域具有重要的应用价值. 关键词: 光子晶体光纤 大模场面积 低弯曲损耗 弯曲方向角  相似文献   

18.
毕卫红  王圆圆  付广伟  王晓愚  李彩丽 《物理学报》2016,65(4):47801-047801
设计了一种新型的石墨烯-空心光纤可调谐结构, 将石墨烯涂覆在空心光纤的空气孔内表面上, 利用有限元法研究了该结构的电光调制特性. 通过改变石墨烯的化学势可以调控光纤的相位和开关特性, 还可以调谐光纤损耗峰与次峰的位置、强度和宽度. 然而, 空气孔半径和石墨烯层数不会改变开关点和损耗峰与次峰的位置, 只会改变损耗差和损耗峰的强度和宽度, 而且由N 层石墨烯引起的损耗差是单层的N倍. 这是因为石墨烯的介电常数决定了光纤的有效折射率和损耗, 通过改变石墨烯的化学势可以改变石墨烯的介电常数, 而石墨烯的层数和空气孔半径却不会改变石墨烯的介电常数, 但是改变了石墨烯和光的作用强度. 经过参数优化之后, 我们提出一种基于五层石墨烯涂覆空心光纤的电吸收型调制器, 工作在1180–1760 nm波段, 具有小尺寸(5 mm×125 μm)、宽光带宽(580 nm)、高消光比(16 dB)、高调制带宽(64 MHz) 和低插入损耗(1.23 dB) 特性. 研究结果对基于石墨烯的可调谐光纤光子器件的设计和应用提供了理论参考.  相似文献   

19.
A compact small-angle X-ray scattering (SAXS) camera was modified in order to cover a significantly wider size range than that typically covered by conventional lab-based devices. A new housing with a larger sample-to-detector distance (230 → 1300 mm) was developed and a new focusing Göbel mirror was installed to provide a narrower beam width needed to detect scattering intensities very close to the primary beam. A new photon-counting detector was applied to probe the intensity at small scattering vectors while an imaging plate detector serves to simultaneously collect data at large scattering angles up to 90°. The relevant features of the camera are shown and discussed based on raytracing simulations and SAXS measurements, respectively. The minimum scattering vector could be decreased by a factor of 10 to a value of 0.008 nm?1 corresponding to structures up to 780 nm in size. Structural analyses of selected particle systems demonstrate ability of the modified camera to probe various structural parameters on multiple scales, e.g., crystallite size, primary particle size, aggregate size, and fractal dimensions. The modified camera system is promising for structural studies of particle formation and growth/aggregation mechanisms since it provides information on multiple scales ranging from angstroms to several hundred nanometers.  相似文献   

20.
The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCPSDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0.6 ± 0.05, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号