首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The first crystal structure of a potassium cation complex with dicyclohexano-18-crown-6 is reported. The potassium 2-nitrophenoxide complex ofsyn-cis-syn dicyclohexano-18-crown-6 crystallizes in the triclinic space group P with cell constantsa=8.604(2),b=10.772(4),C=16.123(5)Å, =73.86(3)°,=77.61(3)°, =82.68(3)° andZ=2 forD c =1.31 g cm–3. Least-squares refinement based on 2742 observed reflections led to a final conventionalR value of 0.040. Dicyclohexano-18-crown-6 has the shape of a saddle with the potassium cation sitting at the saddlepoint. The structure of the 2-nitrophenoxide anion is dominanted by the quinoid resonance contributor. Because the complex is devoid of significant intercomplex interactions, it is a prototypical 1:1:1 complex. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82043 (26 pages).Now Mrs. K. M. Balo.  相似文献   

2.
2,4-dithiouracil (DTU) forms in the crystals the H-bonded monohydrates of a 1:1:1 ratio with 18-crown-6 (18C6) 1, cis,syn,cis-isomer of dicyclohexano-18-crown-6 (DCH6A) 2, and benzo-18-crown-6 (B18C6) 3, while the anhydrous adduct with cis,anti,cis-isomer of dicyclohexano-18-crown-6 (DCH6B) 4 is of a 2:1 ratio. In 1-3 the components reproducibly alternate in the chains, while in 4 the chains are built of the alternative centrosymmetric dimers of 2,4-dithiouracil and the molecules of the cis,anti,cis-isomer of dicyclohexano-18-crown-6.  相似文献   

3.
Cyclohexano-15-crown-5, cyclohexano-18-crown-6, dicyclohexano-15-crown-5, and dicyclohexano-18-crown-6, but not dicylohexano-16-crown-5, in THF dissolve potassium metal to form dark blue potassium alkalide solutions at ambient temperature. On standing, the potassium alkalide complexes decompose and the solutions turn colorless at differing rates. Identification of the products provides insight into the decomposition mechanism.  相似文献   

4.
Summary The extraction behaviour of tetrafluoroborate with crown ethers was studied. A high distribution ratio of tetrafluoroborate is obtained by extraction with dicyclohexano-18-crown-6 (DC18C6) in an organic solvent of high dielectric constant from potassium fluoride solution. The molar ratios of crown ether to KBF4 in the extracted species are probably 1:1 for DC18C6, dibenzo-18-crown-6 and 18-crown-6, and 2:1 for benzo-15-crown-5 and 15-crown-5. The flow-injection extraction-spectrophotometric determination of tetrafluoroborate with Brilliant Green was worked out. Many rock reference samples were analyzed for boron (1–150 ppm).  相似文献   

5.
The crystal structures of inclusion compounds of 4-aminobenzenesulfamidine (sulfaguanidine) (L) with two dicyclohexano-18-crown-6 (DCH-6) isomers A(cis-syn-cis) and B(cis-anti-cis) have been determined by X-ray methods. The complexes exhibit 1:2 host-guest ratios. In fact the complex of isomer A is formulated as [DCH-6A·[L]H2O]L (complexI), while that of isomerB is DCH-6 B L2 (complex I1).In the crystals, host and guests are connected by O-H...0 and N-H...O bonds.  相似文献   

6.
The extraction behavior of perrhenate with crown ethers was studied and methods for the separation and determination of rhenium were developed. The distribution ratio of perrhenate with dicyclohexano-18-crown-6 (DC18C6) increases with increases in the dielectric constant of organic solvents and in the potassium ion concentration of aqueous solution. The molar ratios of crown ether to KReO4 in the extracted species are probably 1:1 for DC18C6, dibenzo-18-crown-6 and 18-crown-6 and 2:1 for benzo-15-crown-5 and 15-crown-5. Microgram amounts of rhenium were satisfactorily separated from large amounts of molbdenum(VI) by extraction with DC18C6 in 1,2-dichloroethane from 2 M potassium hydroxide solution containing tartrate and by back-extraction with sodium phosphate buffer solution after the addition of a twofold volume of hexane to the organic phase. Rhenium was determined by the flow-injection extraction-photometric method with Brilliant Green. Rhenium was satisfactory determined in molybdenite and other ore samples.  相似文献   

7.
The novel dioxime, (4Z,5E)-pyrimidine-2,4,5,6(1H,3H)-tetraone 4,5-dioxime (H2-PTD) was obtained by the interaction of 6-amino-5-nitrosopyrimidine-2,4(1H,3H)-dione with hydroxylamine hydrochloride. X-ray structural analysis determined the 4Z,5E-configuration of the corresponding monoanion, pyrimidine-2,6(1H,3H)-dione-4-iminole-5-iminolate in the inclusion complexes with diazonia-18-crown-6 (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane) (H2-DA18C6)2+ (complex (1), stoichiometry 2 : 1), and its ammonium salt in the complex with the cis-syn-cis isomer of dicyclohexano-18-crown-6(DCHA) (cis-syn-cis-2,5,8,15,18,21-hexaoxatricyclo (20.4.0.09,14)hexacosane) (complex (2), stoichiometry 1 : 1). X-ray data were also obtained for the complex of the product of (H2-PTD) cyclization, (1,2,5)-oxadiazolo(3,4-d)pyrimidine-5,7(4H,6H)-dione (OPD) with diaqua diaza-18-crown-6 (complex (3), stoichiometry 2 : 2 : 1).In (1) the (H-PTD)- anions are joined into dimers through the bifurcated OH...N and OH...O hydrogen bonds and alternate with diazonia-18-crown-6 cations in the chains sustained by the NH(crown) ... O and NH(crown) ...N interactions. The chains are further combined into the 3D network via NH...O(crown) hydrogen bonds. In (2) the self-complementarity of the (H-PTD)- anions facilitates their assembly into the chain via OH...N, NH...O and OH...O interactions. The ammonium cations bridge each anion and the DCHA macrocycle with the formation of a ribbon developed along the [101] direction in the unit cell. Ternary complex (3) is built of the neutral species, diaza-18-crown-6, water molecules and dimers of OPD alternated in the chains and held together by OH...O and NH...O hydrogen bonds.  相似文献   

8.
In the reaction of the cis-syn-cis and cis-anti-cis diastereomers of dicyclohexano-18-crown-6 with 2-nitro and 2,4-dinitroaniline crystalline complexes with a 1:2 stoichiometric composition were obtained only when the cis-anti-cis diastereomer was used. The three-dimensional structure of the complex of the cis-anti-cis diastereomer of dicyclohexano-18-crown-6 with 2,4-dinitroaniline was determined by an x-ray diffraction study. The complexing of o-nitroanilines with the cis-anti-cis diastereomer is explained by the topological conformity of the interacting compounds. The isolation of the individual cis diastereomers from the mixture of them formed as a result of the catalytic hydrogenation of dibenzo-18-crown-6 was accomplished by means of the selective formation of the crystalline complex of the cis-anti-cis diastereomer with 2-nitroaniline.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1190–1195, September, 1988.  相似文献   

9.
Stability constants, free energies, and enthalpies and entropies of the complexation of L-alanine methyl ester hydrochloride (L-Ala-HCl), L-phenylalanine methyl ester hydrochloride (L-Phe-HCl), and valine methyl ester hydrochloride (L-Val-HCl) with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dicyclohexano-18-crown-6 (DC18C6), and dicyclohexano-24-crown-8 (DC24C8) in methanol are reported for 20°C. No significant variation in the stability constants and free energies of complexation is observed, indicating that the various crown ethers are poorly selective in binding the amino acids. However, the nature of the crown ether and the amino acid and their pattern of substitution cause a remarkable variation in the enthalpies and entropies of complexation. This indicates a strong enthalpy–entropy compensation effect. The enthalpy–entropy compensation effect for the crown ether complexes of the amino acid methyl ester hydrochlorides reported herein is compared with that of the crown ethers complexes of the amino alcohols and the free amino acid. It is found that the enthalpy–entropy compensation effect holds equally for the three classes of complexes.  相似文献   

10.
In our publication (1), the extraction of uranium with dicyclohexano-18-crown-6 (mixed isomers) has been described. The extraction equilibrium of uranium(VI) from aqueous hydrochloric acid solution with dicyclohexano-18-crown-6 isomer A (Ia) and isomer B (Ib) in 1,2-dichloroethane is presented in this paper. The extracted species are found to be 1:2 (metal/crown) for Ia and 2:3 for Ib from slope analysis and direct determination of extracted complexes. The extraction equilibrium constants (Kex) have been determined at 25°C, and equal 29.5 for the former and 0.208 for the latter. It is concluded that Ia has stronger coordinate ability for uranium than Ib. The different orientation of the lone pairs of the oxygen atoms in both isomers will be taken into account for interpreting above results. The extraction of uranium(VI) with dicyclohexano-18-crown-6 (mixed isomers) or Ia from aqueous hydrochloric acid solution is effective and selective. In 0.1M crown ether-1,2-dichloroethane-6N HCl system, the separation factor U(VI)/Th(IV) exceeds 1000. The result can be taken in separating uranium and thorium.  相似文献   

11.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and dicyclohexano-18-crown-6, benzo-18-crown-6, dibenzo-18-crown-6 or benzo-15-crown-5. The results demonstrate that these metal ions are extracted into chloroform as Th(PBI)(4) and UO(2)(PBI)(2) with HPBI alone and as Th(PBI)(4) . CE and UO(2)(PBI)(2) . CE in the presence of crown ethers (CE). The equilibrium constants of the above species have been deduced by non-linear regression analysis. The addition of a CE to the metal chelate system enhances the extraction efficiency and also improves the selectivities between thorium and uranium. IR spectral data of the extracted complexes were used to further clarify the nature of the complexes. The binding to the CEs by Th(PBI)(4) and UO(2)(PBI)(2) follows the CE basicity sequence but with DC18C6 and DB18C6, steric effects become more important.  相似文献   

12.
Treatment of 3,5-diisopropyltriazole, 3,5-diphenyltriazole, 3,5-di-3-pyridyltriazole, phenyltetrazole, pyrrolidinyltetrazole, or tert-butyltetrazole with equimolar quantities of potassium hydride and 18-crown-6 in tetrahydrofuran at ambient temperature led to slow hydrogen evolution and formation of (3,5-diisopropyl-1,2,4-triazolato)(18-crown-6)potassium (88%), (3,5-diphenyl-1,2,4-triazolato)(tetrahydrofuran)(18-crown-6)potassium (87%), (3,5-di-3-pyridyl-1,2,4-triazolato)(18-crown-6)potassium (81%), (phenyltetrazolato)(18-crown-6)potassium (94%), (pyrrolidinyltetrazolato)(18-crown-6)potassium (90%), and (tert-butyltetrazolato)(18-crown-6)potassium (94%) as colorless crystalline solids. (1,2,4-Triazolato)(18-crown-6)potassium was isolated as a hemi-hydrate in 81% yield upon treatment of 1,2,4-triazole with potassium metal in tetrahydrofuran. The X-ray crystal structures of these new complexes were determined, and the solid-state structures consist of the nitrogen heterocycles bonded to the (18-crown-6)potassium cationic fragments with eta2-bonding interactions. In addition, (3,5-diphenyl-1,2,4-triazolato)(tetrahydrofuran)(18-crown-6)potassium has one coordinated tetrahydrofuran ligand on the same face as the 3,5-diphenyl-1,2,4-triazolato ligand, while (3,5-di-3-pyridyl-1,2,4-triazolato)(18-crown-6)potassium forms a polymeric solid through coordination of the distal 3-pyridyl nitrogen atoms to the potassium ion on the face opposite the 1,2,4-triazolato ligand. The solid-state structures of the new complexes show variable asymmetry in the potassium-nitrogen distances within the eta2-interactions and also show variable bending of the heterocyclic C2N3 and CN4 cores toward the best plane of the 18-crown-6 ligand oxygen atoms. Molecular orbital and natural bond order calculations were carried out at the B3LYP/6-311G(d,p) level of theory on the model complex, (phenyltetrazolato)(18-crown-6)potassium, and demonstrate that the asymmetric potassium-nitrogen distances and bending of the CN4 core toward the 18-crown-6 ligand are due to hydrogen bond-like interactions between filled nitrogen-based orbitals and carbon-hydrogen sigma orbitals on the 18-crown-6 ligands. Calculations carried out on the model pentazolato complex (pentazolato)(18-crown-6)potassium predict a structure in which the pentazolato ligand N5 core is bent by 45 degrees toward the best plane of the 18-crown-6 oxygen atoms. Such bending is induced by the formation of intramolecular nitrogen-hydrogen-carbon hydrogen bonds. Examination of the solid-state structures of the new complexes reveals many intramolecular and intermolecular nitrogen-hydrogen distances of < or =3.0 A which support the presence of nitrogen-hydrogen-carbon hydrogen bonds.  相似文献   

13.
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.  相似文献   

14.
The complexation behavior of nicotinamide with macrocyclic polyethers viz, 15-crown-5, benzo-15-crown-5, 18-crown-6, dicyclohexano-18-crown-6, dibenzo-18-crown-6, dibenzo-24-crown-8, 1,4,7,10,13,16-hexathiacyclooctadecane, monoaza-15-crown-5, 1,4,10-trioxa-7,13-diaza-cyclopentadecane, 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane, 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, 1,4,7-tritosyl-1,4,7-triazacyclononane, 1,4,7,10-tetratosyl-1,4,7,10-tetraazacyclododecane and 1,4,8,11-tetraazacyclooctadecane has been studied in dimethylsulphoxide (DMSO) and 90% DMSO + water using differential pulse polarography and complexation constants have been reported. Nicotinamide forms stable complexes with six-membered coronand rings of the crown ethers. The nature of the atoms (oxygen, sulfur and nitrogen) in the coronand ring is observed to affect the stability of the complex. The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in peak potentials of the polarograms of nicotinamide against the ligand concentration. The Gibbs free energy change turns out to be negative at 25°C, which indicates the spontaneity of the binding of nicotinamide with crown ethers. The mole ratio of nicotinamide to the macrocyclic compound was also determined and it was found that the complexes were of 1:1 type with respect to crown ethers. The tendency of nicotinamide to form complexes with macrocycles is found to be greater in DMSO than in DMSO + water.  相似文献   

15.
Toluene radical anion, generated by dissolving potassium metal in toluene by the assistance of dicyclohexano-18-crown-6, has been proved to be especially effective for reductive removal of fluorine atom from unactivated alkyl fluorides that resist common reduction conditions. Stereochemical and mechanistic aspects of the present method is discussed. In connection with the preparation of substrates the effect of dipolar aprotic solvents on the nucleophilic fluorination with potassium fluoride/dicyclohexano-18-crown-6 system was also examined, and sulfolane or N,N-dimethyl formamide was shown to be a solvent of choice.T. Ohsawa, T. Takagaki, A. Haneda and T. Oishi,Tetrahedron Lett.,1981, 2583.  相似文献   

16.
From 13C NMR coalescence temperature measurements, free energies of activation for degenerate ring reversal in two configurationally isomeric dicyclohexano-18-crown-6 ethers have been determined to be ca. 10.2 kcal/mole, with higher barriers for the 1:1 complexes with potassium phenoxide.  相似文献   

17.
A spectrophotometric study was conducted on solutions of dicyclohexano-18-crown-6 and dicyclohexano-24-crown-8 with some -acceptors in methylene choride at 25 °C. The spectroscopic data indicate the formation of a charge-transfer complex. In contrast to previous results, our study shows that the Ph-O-CH2 structure is not essential for the formation of charge-transfer complexes. The formation constants (Kf) were calculated and the effect of KCl and NaCl salts on the formation and stability of the complexes is discussed.  相似文献   

18.
A new separation procedure for determination of palladium using dispersive liquid–liquid microextraction with dicyclohexano-18-crown-6 as complexing reagent was developed. In this method, potassium–dicyclohexano-18-crown-6 was used as a hydrophobic complex for the microextraction of palladium as PdCl4 2? complex ion. The main factors affecting DLLME efficiency, such as type and volume of extractant and disperser solvent, concentration of chelating reagent, concentration of KCl and pH were optimized. Under the optimal conditions, the limit of detection for palladium was 16.0 ng mL?1 with enrichment factor of 138. The present method was applied to the determination of palladium in water samples with satisfactory analytical results. The method was simple, rapid, cost efficient and sensitive for the extraction and preconcentration of palladium.  相似文献   

19.
Lee D  Thomas JD 《Talanta》1994,41(6):901-907
Five crown ethers, namely, 4'-picrylamino-5'-nitrobenzo-18-crown-6 (I), dibenzo-18-crown-6 (III), dibenzo-30-crown-10 (IV), dicyclohexano-18-crown-6 (V) and bis-[(benzo-15-crown-5)-15-ylmethyl pimelate] (VI) have been compared with valinomycin (II) for their role as potassium ion-sensors in PVC matrix membrane ion-selective electrodes (ISEs). Sensor I was found to be the best, but fell short of the high quality of the well established sensor II (valinomycin) in terms of selectivity towards potassium over sodium and ammonium. Nevertheless, electrodes made from membranes containing sensor I, 2-nitrophenyl octyl ether (NPOE) or 2-nitrophenyl phenyl ether and potassium tetra-p-chloro-phenylborate (anion excluder) in PVC were of long lifetimes. The loss of slope of the ISEs is linked to small falls in the electrical resistance of the ISE membranes; this being associated with leaching of sensor and solvent mediator from the membranes into test or storage solutions. No chromatographic evidence was found of anion excluder being leached.  相似文献   

20.
A conductance study of the interactionbetween Tl+ ion and 18-crown-6 (18C6),dicyclohexano-18-crown-6 (DC18C6), benzo-18-crown-6(B18C6), diaza-18-crown-6 (DA18C6),dibenzyldiaza-18-crown-6 (DBzDA18C6) andhexaaza-18-crown-6 (HA18C6) indimethylformamide-acetonitrile mixtures was carriedout at various temperatures. The formation constantsof the resulting 1 : 1 complexes were determined fromthe molar conductance-mole ratio data and found tovary in the order HA18C6 > DA18C6 > DBzDA18C6 >18C6 > DC18C6 > B18C6. The enthalpy and entropy ofthe complexation reactions were determined from thetemperature dependence of the formation constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号