首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were ReillexTM HPQ, a polyvinylpyridine resin, and four strong-base polystyrene resins having trimethyl, triethyl, tripropyl, and tributyl amine as their respective functional groups. The cation exchange resins included AmberlystTM 15 and AmberlystTM XN-1010 with sulfonic acid functionality, DuoliteTM C-467 with phosphonic acid functionality, and polyfunctional DiphonixTM with diphosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW.  相似文献   

2.
In this work, the preparation of a new grafted nanosilica-based sorbent was extensively investigated. An inexpensive modifier, cis-9-octadecenoic acid (oleic acid) was selected to be grafted on the surface of the nanosilica particles as the support. The grafting process was accurately confirmed by Fourier transform infra-red spectrometry (FT-IR). Applicability of the prepared sorbent was thoroughly examined by needle trap extraction (NTE) method. The grafted sorbent was dispersed in the appropriate solvent and carefully packed inside a steel needle. Feasibility of the method was completely examined using polycyclic aromatic hydrocarbons (PAHs), as model compounds. For extraction of analytes from aqueous samples, the prepared needle trap device (NTD) was placed in the headspace of the sample and another needle was also inserted into the sample solution to purge the circulating headspace into the sample. For increasing the extraction efficiency, influencing parameters including extraction time and temperature, flow rate of analyte through the needle trap, the ionic strength, desorption temperature, and time were optimized. The limit of detection (LOD) and relative standard deviation (RSD) values of the method under optimized conditions were 2?C5 ng L?1 and 1.1?C4.8%, respectively. The RSD% for fluorene was somewhat higher and a value of 16.8% at 40 ng L?1 was achieved. Finally the developed method was applied to the analysis of tap water and Zayandeh-roud river samples and the relative recovery (RR %) values were found to be in the range of 77?C109%, under the optimized conditions.  相似文献   

3.
Gas chromatographic equipment and procedures are described for automated splitless injection of pseudo-static headspace samples collected externally onto a sorbent trap. The GC microprocessor controls, in sequence, carrier gas backflushing of the sorbent trap for water removal, splitless thermal desorption into a cryogenically cooled wide bore (0.53 mm i. d.) capillary column and oven temperature programming. The method has been routinely applied for profiling the mid-to-high boiling compounds (bp 80–225°C) in the headspace of a variety of foods and beverages. Method criteria, advantages and limitations are discussed. FID and NPD chromatograms for brewed coffee and peanut butter volatiles are presented as typical examples.  相似文献   

4.
In this work, a modified nanoporous silica aerogel was used as a new sorbent for headspace needle trap extraction of chlorobenzenes from aqueous samples. The needle trap extraction is derived from solid-phase microextraction and the sorbent is inside the needle. The thermal stability and functional groups of the sorbent were studied by TG/DTA and FT-IR, respectively. The modified silica aerogels, characterized by field emission scanning electron microscopy, showed a three-dimensional network containing a homogeneous pore structure with pore sizes of a few tens of nm and a sponge-like microstructure. The developed method was applied to the trace level extraction of some chlorobenzene compounds from aqueous samples. The influential parameters on the extraction efficiency, including the extraction temperature, ionic strength and extraction time were investigated and optimized. Under optimized conditions, the detection and quantification limits were in the range of 0.4–0.8 and 1–3 ng L?1, respectively. The relative standard deviation values for water spiked with chlorobenzenes at 100 ng L?1 under optimum conditions were 3–7%. The dynamic linear range of the method in the range of 3–3000 ng L?1 was investigated. Finally, the current method for the analysis of real water samples containing spiked chlorobenzenes was applied and the relative recovery values were found to be in the range of 96–101%.  相似文献   

5.
An automated gas chromatographic system was constructed to easily adapt either the cryogenic trap or chemical sorbent trap for preconcentrating ambient levels of volatile organic compounds. Remarkable similarity in chromatograms from C3 to C10 was found between these two enrichment methods, except that the sorbent trap did not quantitatively trap the C2-hydrocarbons. In contrast to cryogenic trapping, the chromatographic conditions for more volatile compounds were substantially improved using the sorbent trap. Water interference on the porous-layer open tubular column was also better managed using the sorbent trap for the continuous analysis of humid room air. The similarity in peak profiles between the GC-flame ionization detection (FID) and a commercial GC-MS system, regardless of concentration levels, facilitated compound identification on the FID chromatograms based on a field mission involving analysis of 106 air samples.  相似文献   

6.
A novel on-line flow injection solid phase extraction method for the preconcentration of trace toxic metals prior determination by flame atomic absorption spectrometry (FI-SPE-FAAS) was developed. The potential application of the hydrophobic reversed phase co-polymer sorbent StrataTM-X packed into an on-line microcolumn for the quantification of Cd(II), Pb(II), Cu(II) and Cr(VI) was demonstrated for the first time. The method was based on the on-line formation of metal complexes using sodium diethyl-dithiocarbamate (DDTC) and on the subsequent retention of them onto the sorbent material. The target analytes were completely eluted by methanol and, subsequently, directed to FAAS for quantification. All chemical and flow variables affecting the performance of the developed method were thoroughly studied and optimised. For a preconcentration time of 90 s and a sampling frequency of 28 h?1, enhancement factors of 72, 140, 185, 63 and detection limits of 0.18, 1.6, 0.20 and 1.2 μg L ?1 were obtained for Cd(II), Pb(II), Cu(II) and Cr(VI), respectively. The accuracy of the FI-SPE-FAAS method was evaluated by analysing certified reference materials as well as spiked environmental water samples. Furthermore, a comparative study of the analytical characteristics, the properties as well as the chemical structures of commercial polymeric based sorbent materials was employed. Strata-X sorbent was compared against HypersepTM SCX, Bond Elut® PlexaTM PCX, Oasis-HLBTM and NobiasTM PA-1, regarding the adaptation in on-line FI-SPE-FAAS systems for metal determination, and herein presented.  相似文献   

7.
SuperLig 644 ion exchange resin is currently being evaluated for cesium (137Cs) removal from radioactive Hanford tank wastes. To assess the performace of the resin in column configuration, a multiple batch contact method was used to determine the equilibrium distribution coefficients (K d) and percent removal for 137Cs from highly alkaline waste solutions obtained from the Hanford Site. The equilibrium loading data were interpreted in terms of Freundlich and Dublin-Radushkevics (D-R) isotherms. The equations fit the experimental data remarkably well considering the complexity of the Hanford tank waste compositions. The mean energy of adsorption and total resin capacity were calculated. The mean free energy for adsorption of cesium from Hanford tanks was ~9 kJ/mol. The total exchange capacity of the SuperLig 644 resin ranged from 0.72 to 3.46 mmole/g resin, depending on the Hanford tank composition. The K d results reveal that SuperLig 644 resin in highly selective for cesium in the presence of relatively high concentrations of sodium and potassium salts.  相似文献   

8.
We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L?1 (excepted for toluene with 25 ng L?1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.
Figure
Schematic representation of the direct immersion / headspace (micro)solid phase extraction using oxidized single walled carbon nanohorns supported on a microporous hollow fiber for the extraction of volatile organic compound from water samples.  相似文献   

9.
In this article, the potential of carbon nanocones/disks as coating for solid-phase microextraction has been evaluated for the first time. The nanostructures were immobilized on a stainless steel needle by means of an organic binder. The fiber coating obtained was ca. 50 μm of thickness and 35 mm in length. The evaluation of the sorbent capacity was carried out through the determination of toluene, ethylbenzene, xylene isomers and styrene in water samples following the headspace sampling modality (15 min, 30 °C). The fiber was then transferred to a 10 mL vial which was sealed and heated at 110 °C for 15 min in the headspace module of the instrument to achieve the thermal desorption of the analytes. Then 2.5 mL of the headspace generated were injected in the gas chromatograph-mass spectrometer for analytes separation and quantitation. The detection and quantitation limits obtained for 10 mL of sample were 0.15 and 0.5 ng mL−1 (0.6 and 2 ng mL−1 for toluene). The optimized procedure was applied to the determination of the selected volatile compounds in waters collected from different locations. The recovery values obtained (average recovery ca. 92%) demonstrated the usefulness of the carbon nanocones/disks as sorbent material in solid-phase microextraction.  相似文献   

10.
Two 4-vinylimidazole-divinylbenzene (4VIm-DVB) polymers were synthesized and applied as sorbents for on-line solid-phase extraction (SPE) followed by liquid chromatography for analyzing polar compounds in aqueous samples. The new sorbents (4VIm-DVB) were compared to another sorbent that had been previously synthesized by our group (N-vinylimidazole-divinylbenzene (NVIm-DVB)) and to the commercial OASIS® HLB and StrataTM X. All the sorbents enabled 100 mL of sample to be on-line concentrated with good recoveries for the studied polar compounds. Real water samples were analyzed using NVIm-DVB and OASIS® HLB as SPE sorbent, for which the best results were obtained.  相似文献   

11.
The aim of this study was to develop a new method for the determination of benzene, toluene, ethylbenzene and xylene isomers (BTEXs) in urine samples. In this method, MIL-100(Fe)@Fe3O4@SiO2 metal–organic framework was synthesized, characterized and packed inside a needle trap device (NTD) as a sorbent for headspace extraction of unmetabolized BTEXs from urine samples followed by gas chromatography (GC) analysis. The GC device was equipped with a flame ionization detector (FID). The results showed that the optimal extraction time, extraction temperature and salt content were 60 min, 30°C and 5%, respectively. Also, the optimal desorption time and temperature were determined to be 1 min and 250°C, respectively. The limits of detection and quantification of the analytes of interest were in the ranges 0.0001–0.0005 and 0.0003–0.0014 μg ml−1, respectively. The intra- and inter-day repeatability were <7.6%. The accuracy of the measurements in urine samples was in the range 7.1–11.4%. The results also demonstrated that the proposed NTD offered various advantages such as having high sensitivity and being inexpensive, reusable, user friendly, environmentally friendly and compatible for use with the GC device. Therefore, it can be efficiently used as a MIL–NTD for the extraction and analysis of unmetabolized BTEXs from urine samples.  相似文献   

12.
A method has been developed for the automated determination of C5 C10 and C2 C6 volatile organic compounds in urban and rural air, using programmed temperature vaporization injection from a sorbent tube trap. A single activated charcoal sorbent tube was repeatedly used to collect samples of air with trapped VOCs being subsequently desorbed onto either a wide bore dimethyl polysiloxane (C5 C10) or porous layer open tubular (C2 C6) gas chromatography column without use of intermediate cryogenic refocussing. The high flow rates of helium used during the analysis resulted in the sample tube being cleaned and ready to reuse following the analytical separation. Examples of analysis of aromatic VOCs in urban air, and biogenic emissions in rural air, collected in a Sitka Spruce forest are presented. Using this method it is possible to quasi-continuously monitor concentrations of VOCs in locations where high sensitivity in situ analysis is required, but where cryogenic coolants may not be readily available or desirable.  相似文献   

13.
The commercially available portable gas chromatographs have a rather limited scope of applications, typically allowing analysis of gaseous samples only, and having relatively poor sensitivity. Combination of those instruments with modern sampling/sample preparation techniques can remedy these problems. A Chrompack micro-GC system equipped with a thermal conductivity detector has been coupled to membrane extraction with a sorbent interface (MESI). The sorbent trap has replaced the GC injector. The design of the trap was also modified in order to enhance the preconcentration of analytes. The use of a thin flat sheet membrane reduces the response time, and decreases the memory effect of the system. Rapid separation times were achieved, and the sensitivity was significantly improved. MESI enables semi-continuous monitoring of both gaseous and aqueous samples, owing to the selectivity of the membrane material. The system does not use moving parts, therefore being reliable. The sensitivity of the micro-GC system was increased by a factor of more than 100 by the addition of the MESI system, even with a preconcentration time as short as 1 min. Chloroform, having a concentration lower than 1 ppb, was detected in tap water. A cup system was used to allow headspace sampling of volatile organic compounds from aqueous matrices, keeping the membrane away from interfering species that could be present in water, and improving the mass transfer. A linear calibration line was obtained, and the estimated limit of detection was 60 ppt. This represents a great improvement for the sensitivity of the micro-GC system.  相似文献   

14.
Metal‐organic frameworks, a new class of materials with high surface area and great porosity, have been widely applied in gas sorption. It is generally known that metal‐organic framework 5 cannot be applied in aqueous phase since it is water sensitive. However, this work reveals that the derived material of metal‐organic framework 5 is a good SPE sorbent that can be applied to aqueous phases. Metal‐organic framework 5 was prepared and used as a SPE sorbent for the determination of polycyclic aromatic hydrocarbons in environmental matrices coupling with HPLC. The water treatment induced changes in the properties were investigated in detail. Even though metal‐organic framework 5 is conversed to a second phase after water treatment, it still shows high extraction ability. Under the optimized experimental conditions, good sensitivity levels were achieved with low LODs ranging from 0.4 to 4.0 ng L?1 and a linearity of 0.004–20 μg L?1 (R2 > 0.996) for the investigated polycyclic aromatic hydrocarbons. The method has been validated in the analysis of real water samples with recoveries in the range of 80.2–120.2% and RSDs in the range of 0.5–11.7%.  相似文献   

15.
The Hanford Nuclear Site, near Richland, Washington, is developing a method to simultaneously remove chelated 90Sr and 241Am from the liquid phase of high-level nuclear waste using sodium permanganate and cold strontium nitrate. This method has been reported previously for treating diluted waste in the Hanford Waste Treatment and Immobilization facility (WTP) that is currently under construction. This method had not been verified previously for treating the more concentrated waste as it sits in the tank farm. There are a number of logistical advantages to performing this process in the tank farm. Therefore, the present study was undertaken to compare the removal of 90Sr and 241Am in diluted waste (WTP conditions) and more concentrated waste (tank farm conditions). Both diluted and more concentrated waste from Hanford tank AN-107 was treated with 3.0 M Sr(NO3)2 and 3.8 M NaMnO4, at a constant cold chemical to radionuclide ratio. The amount of 90Sr and 241Am removed was monitored through alpha and beta counting. The removal of 90Sr was essentially identical at both levels of dilution. The removal of 241Am was slightly better in the diluted sample than in the tank farm sample, but the difference was not large (77 % versus 67 % removed). These results indicate that it is reasonable to expect this 90Sr and 241Am removal process can be employed in the tank farm.  相似文献   

16.
We report on a simple, rapid, and efficient method for the extraction of volatile organic compounds (VOCs; including methanol, tetrahydrofuran, 2-hexanone and benzene) from air and solid samples. The system is based on the use of a laboratory-made syringe as the extractor. The needle of the syringe is placed in a chamber cooled by liquid nitrogen. The tip of the needle is placed in the headspace of a vial containing the sample. The headspace components then are circulated with a pump to pass the needle, and this results in freeze-trapping of the VOCs on the inner surface of the needle. The circulation of the headspace components is continued for 15 min, and the syringe is then removed and placed in a GC injector. The effects of volume of the sample vial, headspace flow rate, temperature and time of extraction and desorption were optimized. The overall time for sampling and analysis is <30 min. The method displays an extraction efficiency of >80%) and a good sample transfer efficiency into the GC column due to the absence of a sorbent inside the needle. No carry-over was observed after 30?s desorption at 260?°C. An external standard method was used for quantitative analysis. The relative standard deviation values are below 10% and the limits of detection range from 1.3 to 4.6?ng?g?1.
Fiugre
The scheme of sorbentless cryogenic needle trap device  相似文献   

17.
SuperLigÒ 644 ion exchange resin is currently being evaluated for cesium (137Cs) removal from radioactive Hanford tank waste supernates as part of the River Protection Project. Testing was performed with actual Hanford tank wastes of widely different compositions using two identical ion exchange columns connected in series each containing approximately 5.5-6.5 ml of SuperLig 644 resin. The ion exchange columns utilized the same resin material that was eluted between the column tests. This was done to demonstrate the performance of the SuperLig 644 resin for cesium removal from waste samples of different compositions, determine the loading and elution profiles, and to validate design assumptions for full-scale column performances. Decontaminated product solutions generated at the same operating temperature and constant residence times (bed volumes per hour) exhibited the same chemical compositions as their feed samples. The compositions of eluate solutions were generally as expected with the exception of uranium and total organic carbon, which where concentrated by the resin. Development of a pretreatment method for the SuperLig 644 resin has been critical to successful column operation with different waste solutions.  相似文献   

18.
A methodology for the sampling and determination of airborne pesticides has been developed. The trapping efficiency of three adsorbents, namely XAD-2,XAD-4 and a sandwich sorbent (PUF-XAD2-PUF), was tested for 34 pesticides and the latter was selected because it presented the highest retention capacity without breakthrough. Pesticides were determined by gas chromatography coupled to an ion trap mass spectrometer in tandem. The method showed recoveries ranging from 70% to 120% with limits of quantification in the range of 16.1–322.6 pg m?3 when 155 m3 were sampled. This analytical strategy was applied to 10 indoor air samples collected in dwellings from the Valencian Region. Six pesticides, namely diphenylamine, pyrimethanil, bifenthrin, lambda-cyhalothrin, permethrin and cypermethrin were detected in indoor samples with concentrations ranging from 1.46 to 22.02 ng m?3.  相似文献   

19.
A new type of composite material based on carbon nanotubes (CNTs) and sol–gel chemistry was prepared and used as sorbent for needle trap device (NTD). The synthesized composite was prepared in a way to disperse CNTs molecules in a sol–gel polymeric network. CNT/silica composites with different CNT doping levels were successfully prepared, and the extraction capability of each composite was evaluated. Effects of surfactant and the oxidation duration of CNTs on the extraction efficiency of synthesized composites were also investigated. The applicability of the synthesized sorbent was examined by developing a method based on needle trap extraction (NTE) and gas chromatography mass spectrometry detection (GC–MS) for the determination of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Important parameters influencing the extraction process were optimized and an extraction time of 30 min at 50 °C and sampling flow rate of 2.5 mL min−1 gave maximum peak area, when NaCl (15%, w/v) was added to the aqueous sample. The linearity for acenaphthene, acenaphthylene and fluorene was in the concentration range of 0.01–20 ng mL−1 and for naphthalene and anthracene was in the range of 0.1–50 ng mL−1. Limits of detection was 0.001 ng mL−1, for acenaphthene, acenaphthylene and fluorene, and 0.01 ng mL−1, for naphthalene and anthracene using time-scheduled selected ion monitoring (SIM) mode, and the RSD% values (n = 3) were all below 11.2% at the 1 ng mL−1 level. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples were from 73.8 to 113.8%.  相似文献   

20.
A portable, field rugged, sampling and analysis system has been developed for the rapid screening of aqueous samples during scoping and remediation studies. Using field portable equipment, water is pumped through ion selective solid phase extraction (SPE) disks, at a flow rate of 150-250 ml/min, and counted for the radionuclide of interest in the field using portable detectors. SPE disks are currently available to selectively concentrate 99Tc, 90Sr, radiocesium (134Cs and 137Cs) and radium isotopes. In the field the radiocesium concentration is determined by gamma-spectrometry, 90Sr and 99Tc are determined by beta-counting. A one-liter sample can be processed and ready for counting within ten minutes. Using a 5-minute counting time, a detection limit of <50 pCi/l for 99Tc or 90Sr and ~50 pCi/l for 137Cs has been achieved. Up to 10 liters of water have been processed for the analysis of 99Tc and 137Cs when lower limits of detection were required. The sampling and analysis system has been field tested at the Savannah River Site (SRS), Aiken SC, and the Hanford Site, Richland WA. The SRS H-area tank farm storm water runoff system was analyzed for 90Sr and 137Cs. Groundwater from the SX tank farm at the Hanford Site was analyzed for 137Cs and 99Tc. Groundwater from seeps below the 100-H area at Hanford was analyzed for 90Sr and 99Tc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号