首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A simple, inexpensive and reliable analytical method was developed for the determination of polybrominated diphenyl ethers (PBDEs) in polyethylene terephthalate (PET) bottled beverage using GC‐MS. The sample pretreatment using dispersive solid‐phase extraction (DSPE) for removing matrix and dispersive liquid–liquid microextraction (DLLME) for enriching analytes was performed. For the DSPE, different sorbents such as primary amine, secondary amine, C18 and graphitized carbon black were tested for different sample matrices. By means of DSPE, 60–89% of the sample matrices could be removed. Acetonitrile solution obtained by DSPE cleanup was directly used as the dispersant for the subsequent DLLME, which made the combination of the DSPE with the DLLME much more straightforward. Under the optimal conditions, the enrichment factors (EFs) of PBDEs ranged from 199 to 292. Using matrix‐matched calibration, correlation coefficients above 0.994 were found and LODs ranged from 0.0023 to 0.15 μg/L. The recoveries were between 80 and 117% for beverages spiked at three different concentrations (1.0, 5.0 and 10 μg/L) with RSDs ranging from 3.7 to 14.7% (n=5). The results indicated that the combination of DSPE with DLLME was a powerful sample preparation tool for analysis of ultratrace analytes in complicated matrices.  相似文献   

2.
Solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) was applied for the extraction of six organophosphorous pesticides (OPPs) in water samples. The analytes considered in this study were determined by gas chromatography with mass spectrometry and included prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction conditions (extraction solvent and elution/dispersion solvents nature, extraction solvent volume, elution solvent volume, water volume and sample volume) were tested for SPE-DLLME with these analytes and the best results were obtained using carbon tetrachloride as the extraction solvent and acetone as the elution/dispersion solvent. Calibration curves for the determination of OPPs in water samples were constructed in the concentration range of 10-100 ng/L. Limits of detection (LODs) ranged from 38 to 230 pg/L values that are below the maximum admissible level for drinking water (100 ng/L). Relative standard deviations (RSD) were between 8.6 and 10.4% for a fortification level of 100 ng/L. At the same fortification level, the relative recoveries (R.R.) of tap, well and irrigation water samples were in the range of 30.2-97.1%.  相似文献   

3.
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography and mass spectrometry (GC-MS) was applied to the determination of six organophosphorous pesticides (OPPs) in water samples. The analytes included in this study were prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction and dispersion solvents were tested for dispersive liquid-liquid microextraction of these analytes and the best results were obtained using chloroform as extraction solvent and 2-propanol as dispersion solvent. Calibration curves of the analytes in water samples were constructed in the concentration range from 100 to 1100 ng/L for prophos, diazinon and methyl parathion and in the range from 100 to 1000 ng/L for chlorpyrifos methyl, fenchlorphos and chlorpyrifos. Limits of detection (LODs) were in the range of 1.5-9.1 ng/L and limits of quantification (LOQs) were in the range of 5.1-30.3 ng/L, below the maximum admissible level for drinking water. Relative standard deviations (RSDs) were between 6.5 and 10.1% in the concentration range of 100-1000 ng/L. The relative recoveries (%RRs) of tap, well and irrigation water samples fortified at 800 ng/L were in the range of 46.1-129.4%, with a larger matrix effect being detected in tap water.  相似文献   

4.
A simple and rapid dispersive liquid-liquid microextraction (DLLME) technique coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) was developed for the extraction, preconcentration, and analysis of triazole pesticides (penconazole, hexaconazole, tebuconazole, triticonazole, and difenoconazole) in cow milk samples. Initially to 5 mL milk sample, NaCl and acetonitrile were added as salting-out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of sodium chloride, a two-phase system was formed: upper phase, acetonitrile containing triazole pesticides and lower phase, aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of pesticides from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with chloroform at microliter level and rapidly injected by syringe into 5 mL distilled water. In this process, triazole pesticides were extracted into fine droplets of chloroform (as extraction solvent). After centrifugation, the fine droplets of chloroform were sedimented in bottom of the conical test tube. Finally, GC-FID and GC-MS were used for the separation and determination of analytes in the sedimented phase. Some important parameters like type of solvent for extraction of pesticides from milk, salt amount, the volume of extraction solvent, etc., which affect the extraction efficiency, were completely studied. Under the optimum conditions, enrichment factors were in the range of 156-380. The linear ranges of calibration curves were wide and limits of detection (LODs) and limits of quantification (LOQs) were between 4-58 and 13-180 μg/L, respectively. This method is very simple and rapid, requiring <15 min for sample preparation.  相似文献   

5.
Ionic liquid-based dispersive liquid-liquid microextraction was developed for the extraction and preconcentration of aromatic amine from environmental water. A suitable mixture of extraction solvent (100 μL, 1-butyl-3-methylimidazolium hexafluorophoshate) and dispersive solvent (750 μL, methanol) were injected into the aqueous samples (10.00 mL), forming a cloudy solution. After centrifuging, enriched analytes in the sediment phase were determined by HPLC-UV. The effect of various factors, such as the extraction and dispersive solvent, sample pH, extraction time and salt effect were investigated. Under optimum conditions, enrichment factors for 2-anilinoethanol, o-chloroaniline and 4-bromo-N,N-dimethylaniline were above 50 and the limits of detection (LODs) were 0.023, 0.015 and 0.026 ng/mL, respectively. Their linear ranges were 0.8-400 ng/mL for 2-anilinoethanol, 0.5-200 ng/mL for o-chloroaniline and 0.4-200 ng/mL for 4-bromo-N,N-dimethylaniline, respectively. Relative standard deviations (RSDs) were below 5.0%. The relative recoveries from samples of environmental water were in the range of 82.0-94.0%. Compared with other methods, dispersive liquid-liquid microextraction is simple, rapid, sensitive and economical.  相似文献   

6.
The present study reports a new method for analyzing class 1 residual solvents (RSs), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCE), 1,1,1-trichloroethane (1,1,1-TCE), carbon tetrachloride (CT), and benzene (Bz), in pharmaceutical products using dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-flame ionization detection (GC-FID). Unlike common DLLME methods, solvents of high boiling point were selected as dispersive and extraction solvents in order to prevent their chromatographic peaks from overlapping with those of analytes that have short retention times. Therefore N,N-dimethyl formamide (DMF) and 1,2-dibromoethane (1,2-DBE) were chosen as dispersive and extraction solvents, respectively. Analytical parameters of the proposed method were determined and good linearities and broad linear ranges (LRs) were obtained. Taking 500 mg samples, limit of detections for the tested pharmaceuticals were obtained as 0.11, 0.03, 0.05, 0.05, and 0.006 μg g(-1) for CT, 1,1-DCE, 1,2-DCE, 1,1,1-TCE, and Bz, respectively, which are considerably much lower than their permissible limits in pharmaceuticals.  相似文献   

7.
Yazdi AS  Razavi N  Yazdinejad SR 《Talanta》2008,75(5):1293-1299
Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–flame ionization detection (GC–FID) was applied for the determination of two tricyclic antidepressant drugs (TCAs), amitriptyline and nortriptyline, from water samples. This method is a very simple and rapid method for the extraction and preconcentration of these drugs from environmental sample solutions. In this method, the appropriate mixture of extraction solvent (18 μL Carbon tetrachloride) and disperser solvent (1 mL methanol) are injected rapidly into the aqueous sample (5.0 mL) by syringe. Therefore, cloudy solution is formed. In fact, it is consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. The mixture was centrifuged and the extraction solvent is sedimented on the bottom of the conical test tube. 2.0 μL of the sedimented phase is injected into the GC for separation and determination of TCAs. Some important parameters, such as kind of extraction and disperser solvent and volume of them, extraction time, pH and ionic strength of the aqueous feed solution were optimized. Under the optimal conditions, the enrichment factors and extraction recoveries were between 740.04–1000.25 and 54.76–74.02%, respectively. The linear range was (0.005–16 μg mL−1) and limits of detection were between 0.005 and 0.01 μg mL−1 for each of the analytes. The relative standard deviations (R.S.D.) for 4 μg mL−1 of TCAs in water were in the range of 5.6–6.4 (n = 6). The performance of the proposed technique was evaluated for determination of TCAs in blood plasma.  相似文献   

8.
A novel method, dispersive liquid-liquid microextraction combined with liquid chromatography-fluorescence detection is proposed for the determination of three beta-blockers (metoprolol, bisoprolol, and betaxolol) in ground water, river water, and bottled mineral water. Some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, pH, and salt effect were investigated and optimized. In the method, a suitable mixture of extraction solvent (60 μL carbon tetrachloride) and dispersive solvent (1 mL acetonitrile) were injected into the aqueous samples (5.00 mL) and the cloudy solution was observed. After centrifugation, the enriched analytes in the bottom CCl(4) phase were determined by liquid chromatography with fluorescence detection. Under the optimum conditions, the enrichment factors (EFs) for metoprolol, bisoprolol, and betaxolol were 180, 190, and 182, and the limits of detection (LODs) were 1.8, 1.4, and 1.0 ng L(-1) , respectively. A good linear relationship between the peak area and the concentration of analytes was obtained in the range of 3-150 ng L(-1) . The relative standard deviations (RSDs) for the extraction of 10 ng L(-1) of beta-blockers were in the range of 4.6-5.7% (n = 5). Compared with other methods, dispersive liquid-liquid microextraction is a very simple, rapid, sensitive (low limit of detection), and economical (only 1.06 mL volume of organic solvent) method, which is in compliance with the requirements of green analytical methodologies.  相似文献   

9.
In this study, the organochlorine pesticides (OCPs) levels in lake and tap water samples were determined by a dispersive liquid-liquid microextraction method using a low-density organic solvent and an improved solvent collection system (DLLME-ISCS). This method used a very small volume of a solvent of low toxicity (11 μL of 1-nonanol and 400 μL of methanol) to extract OCPs from 10 mL water samples prior to the analysis by GC. After centrifugation in the dispersive liquid-liquid microextraction, there was a liquid organic drop floating between the water surface and the glass wall of the centrifuge tube. The liquid organic drop (with some water phase) was transferred into a microtube (3 mm×15 mm) with a syringe. The organic and aqueous phases were separated in the microtube immediately. Then, 1 μL of the organic solvent (which was in the upper portion of liquid in the microtube) was easily collected by a syringe and injected into the GC-ECD system for the analysis. Under optimum conditions, the linear range of this method was 5-5000 ng/L for most of the analytes. The correlation coefficient was higher than 0.997. Enrichment factors ranged from 1309 to 3629. The relative recoveries ranged from 73 to 119% for lake water samples. The LODs of the method ranged from 0.7 to 9.4 ng/L. The precision of the method ranged from 1.0 to 10.8% for lake water.  相似文献   

10.
A simple, rapid, and efficient method, dispersive liquid–liquid microextraction (DLLME) coupled with high‐performance liquid chromatography‐fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0–2, 2–4, and 4–6 h and concentration and ratio of two enantiomers was determined. The ratio of R‐(?) to S‐(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH2Cl2. After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid–liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers.  相似文献   

11.
In this article, a novel and simple microextraction method, termed ionic liquid/ionic liquid dispersive liquid–liquid microextraction (IL/IL‐DLLME), has been designed and developed for the rapid enrichment and analysis of environmental pollutants. Instead of using hazardous organic solvents, two kinds of ILs, hydrophobic IL and hydrophilic IL, were used as extraction solvent and disperser solvent in IL/IL‐DLLME step, respectively. Permethrin and biphenthrin, two of the often‐used pyrethroid pesticides, were used as model compounds. Factors that may affect the enrichment efficiencies were investigated and optimized in detail. Under optimum conditions, permethrin and biphenthrin exhibited a wide linear relationship over the range 1–100 μg/L. For permethrin and biphenthrin, the precisions were 4.65–7.78%, and limits of detection were found to be 0.28 and 0.83 μg/L, respectively. Satisfactory results were achieved when the present method was applied to analyze the target compounds in real‐world water samples with spiked recoveries over the range 84.1–113.5%. All these facts indicated that IL/IL‐DLLME is a simple and rapid alternative for the enrichment and analysis of environmental pollutants and will have a wide application perspective in the future.  相似文献   

12.
A new method was developed for determination of methomyl in water samples by combining a dispersive liquid-liquid microextraction (DLLME) technique with HPLC-variable wavelength detection (VWD). In this extraction method, 0.50 mL of methanol (as dispersive solvent) containing 20.0 microL of tetrachloroethane (as extraction solvent) was rapidly injected by syringe into a 5.00-mL water sample containing the analyte, thereby forming a cloudy solution. After phase separation by centrifugation for 2 min at 4000 rpm, the enriched analyte in the settled phase (8 +/- 0.2 microL) was at the bottom of the conical test tube. A 5.0-microL volume of the settled phase was analyzed by HPLC-VWD. Parameters such as the nature and volume of the extraction solvent and the dispersive solvent, extraction time, and the salt concentration were optimized. Under the optimum conditions, the enrichment factor could reach 70.7 for a 5.00-mL water sample and the linear range, detection limit (S/N = 3), and precision (RSD, n = 6) were 3-5000 ng/mL, 1.0 ng/mL, and 2.6%, respectively. River and lake water samples were successfully analyzed by the proposed method. Comparison of this method with solid-phase extraction, solid-phase microextraction, and single-drop microextraction, indicates that DLLME combined with HPLC-VWD is a simple, fast, and low-cost method for the determination of methomyl, and thus has tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

13.
Ultrasound-assisted emulsification microextraction and dispersive liquid-liquid microextraction were compared for extraction of ephedrine, norephedrine, and pseudoephedrine from human urine samples prior to their determination by capillary electrophoresis. Formation of a microemulsion of the organic extract with an aqueous solution (at pH 3.2) containing 10% methanol facilitated the direct injection of the final extract into the capillary. Influential parameters affecting extraction efficiency were systematically studied and optimized. In order to enhance the sensitivity further, field-amplified sample injection was applied. Under optimum extraction and stacking conditions, enrichment factors of up to 140 and 1750 as compared to conventional capillary zone electrophoresis were obtained resulting in limits of detection of 12-33 μg/L and 1.0-2.8 μg/L with dispersive liquid-liquid microextraction and ultrasound-assisted emulsification microextraction when combined with field-amplified sample injection. Calibration graphs showed good linearity for urine samples by both methods with coefficients of determination higher than 0.9973 and percent relative standard deviations of the analyses in the range of 3.4-8.2% for (n = 5). The results showed that the use of ultrasound to assist microextraction provided higher extraction efficiencies than disperser solvents, regarding the hydrophilic nature of the investigated analytes.  相似文献   

14.
A new technique for the analysis of volatile aromatic hydrocarbons by combining liquid-liquid microextraction with solid phase microextraction has been developed. The analytes were extracted from aqueous samples by an immobilized polydimethylsiloxane fiber assisted by the droplets of an appropriate organic solvent. Benzene, toluene, ethylbenzene, and o-xylene were used as target analytes. The main factors potentially affecting the microextraction such as the nature and the volume of organic solvent, polydimethylsiloxane (PDMS) swelling, extraction time, agitation, temperature, and salts were optimized. The method requires a very low consumption of organic solvent. The relative enrichment factor is in the range of 7.1-32.4 for extraction in the presence of dichloromethane at an optimum volume of 18 μL mL(-1) of aqueous sample. This enhancement over regular polydimethylsiloxane fiber is primarily the result of the fiber swelling and of a stable thin layer of organic solvent attached to the surface of the PDMS fiber. The limit of detection ranges from 0.02 to 0.65 ng mL(-1) for the target compounds using a 7-μm bonded polydimethylsiloxane coating and a flame ionization detector. The validity of this method is demonstrated by the analysis of a real waste water sample.  相似文献   

15.
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography and mass spectrometry (GC-MS) was applied to the determination of five organophosphorous pesticides (OPPs) in water samples. The analytes included in this study were prophos, diazinon, chlorpyrifos methyl, fenchlorphos, and chlorpyrifos. The use of nonhalogenated solvents (cyclohexane, heptane, and octane) as extraction solvents was investigated using acetone, acetonitrile, or methanol, as dispersion solvents. The combination of less polar dispersion solvents (1-propanol and 2-propanol) and nonhalogenated extraction solvents was also studied in dispersive liquid-liquid microextraction for the first time. Several experimental conditions were tested (nature and volume of extraction solvents, nature and volume of dispersion solvents, salting-out effect) and the corresponding enrichment factors and recoveries were evaluated. The best microextraction condition was obtained using 50 μL of cyclohexane and 0.3 mL of 1-propanol. The detection and quantification limits were in the low ppt range, with values between 3.3-8.0 ng/L and 11.0-26.6 ng/L, respectively. Relative standard deviations were between 6.6 and 13.1% for a fortification level of 500 ng/L. At the same fortification level, the relative recoveries (RR) of Alvito's dam water, Judeu's river water, and well water samples were in the range of 50.3-97.1%.  相似文献   

16.
A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD≤11.8%, n=5) with satisfactory linearity (r(2)≥0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples.  相似文献   

17.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied in rat urine for the extraction and determination of tetrahydropalmatine (THP) and tetrahydroberberine (THB), both active components in Rhizoma corydalis. Various parameters affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, pH, etc. were evaluated. Under the optimal conditions (extraction solvent: 37 μL of chloroform, dispersive solvent: 100 μL of methanol, alkaline with 100 μL of 1 mol/L NaOH, and without salt addition), the enrichment factors of THP and THB were more than 30. The extraction recoveries were 69.8-75.8% and 72.7-77.6% for THP and THB in rat urine, respectively. Both THP and THB showed good linearity in the range of 0.025-2.5 μg/mL, and the limit of quantification was 0.025 μg/mL (S/N=10, n=6). The intra-day and inter-day precision of THP and THB were <12.6%. The relative recoveries ranged from 95.5 to 107.4% and 96.8 to 100.9% for THP and THB in rat urine, respectively. The method has been successfully applied to rat urine samples. The results demonstrated that DLLME is a very simple, rapid and efficient method for the extraction and preconcentration of THP and THB from urine samples.  相似文献   

18.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

19.
This paper described a simple, rapid and efficient method for the determination of N-methyl carbamate pesticides in tomato, cucumber, carrot and lettuce samples by dispersive liquid-liquid microextraction coupled with HPLC-diode array detection. Some experimental parameters that influenced the extraction efficiency, such as types and volumes of extraction and disperser solvents, extraction time and salt effect were examined and optimized. Under optimum conditions, the LOD of the method were 0.5-3.0 μg/kg depending on the compounds and the kind of vegetables. The linearities of the method were obtained in the range of 10.0-300 μg/kg for aldicarb, MTMC, carbofuran and carbaryl, and 20.0-600 μg/kg for isoprocarb, with the correlation coefficients ranging from 0.9921 to 0.9993. The RSD varied from 2.9 to 7.5% (n=5). The recoveries of the method for the five carbamates from vegetable samples at two different spiking levels were ranged from 77.8 to 98.2%. Results showed that the method we proposed can meet the requirements for the determination of N-methyl carbamate in vegetable samples and was finally applied to the analysis of target pesticides in vegetable samples taken from local markets.  相似文献   

20.
A rapid, selective and sensitive sample preparation method based on solid‐phase extraction combined with the dispersive liquid–liquid microextration was developed for the determination of pyrethroid pesticides in wheat and maize samples. Initially, the samples were extracted with acetonitrile and water solution followed phase separation with the salt addition. The following sample preparation involves a solid‐phase extraction and dispersive liquid–liquid microextraction step, which effectively provide cleanup and enrichment effects. The main experimental factors affecting the performance both of solid‐phase extraction and dispersive liquid–liquid microextration were investigated. The validation results indicated the suitability of the proposed method for routine analyze of pyrethroid pesticides in wheat and maize samples. The fortified recoveries at three levels ranged between 76.4 and 109.8% with relative standard deviations of less than 10.7%. The limit of quantification of the proposed method was below 0.0125 mg/kg for the pyrethoroid pesticides. The proposed method was successfully used for the rapid determination of pyrethroid residues in real wheat and maize samples from crop field in Beijing, China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号