首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
In this review, we check out the number of published literature in the field of ECL biosensors trends during nearly a decade, and compare the research status of four different types of biosensors; summarize the application forms of nanomaterials in ECL biosensor. We have an overview of the building patterns and application example of the four main types of biosensors in the paper.  相似文献   

2.
利用静电吸附作用将联吡啶钌[Ru(bpy)32+]负载到巯基化MCM-41介孔二氧化硅纳米颗粒上, 通过金-巯键修饰法将负载后的MCM-41固定在金电极表面, 发展了一种基于MCM-41负载联吡啶钌的电致化学发光传感器, 并研究了其电化学及电致化学发光行为. 基于三聚氰胺与增敏剂三正丙胺氨基结构的相似性, 将负载Ru(bpy)32+的MCM-41电致化学发光传感器用于三聚氰胺的检测, 获得了良好的检测效果, 为检测三聚氰胺提供了一种快速、简便的方法. 同时, 该研究为Ru(bpy)32+在电极表面的固定化提供了新思路.  相似文献   

3.
The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation–anion annihilation is an energy‐deficient process and, thus, the ECL has been justified through the triplet–triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron‐transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.  相似文献   

4.
Among luminescence techniques, electrogenerated chemiluminescence (ECL) provides a unique level of manipulation of the luminescent process by controlling the electrochemical trigger. Despite its attractiveness, ECL is by essence a 2D process where light emission is strictly confined to the electrode surface. To overcome this intrinsic limitation, we added a new spatial dimension to the ECL process by generating 3D ECL at the level of millions of micro-emitters dispersed in solution. Each single object is addressed remotely by bipolar electrochemistry and they generate collectively the luminescence in the bulk. Therefore, the entire volume of the solution produces light. To illustrate the generality of this concept, we extended it to a suspension of multi-walled carbon nanotubes where each one acts as an individual ECL nano-emitter. This approach enables a change of paradigm by switching from a surface-limited process to 3D electrogenerated light emission.  相似文献   

5.
The enormous potential of biosensors in medical diagnostics has motivated scientists to develop newer innovative tools and advance biosensing technologies. The use of cell, organelles, nucleotides, aptamers, antibodies, affibodies, proteins, peptides, molecules, and printed polymers, merged with nanotechnology, offers excellent tools to prepare highly sensitive and advanced biosensors. Therefore, the current decade has witnessed a rapid surge in the fabrication of different nanomaterial-based biosensors. Among them, carbon nanomaterials (CNMs) have emerged highly attractive in the fabrication of both electrochemical and electrochemiluminescence (ECL) biosensors. On one hand, CNMs bear prominent electrical conductivity, large surface area to immobilize adequate amount of biomolecules, an enhanced loading capacity, improved biocompatibility, and active site for electrochemical reaction. Additionally, CNMs could be chemically modified for the covalent coupling with the biomolecules. On the other hand, both electrochemical and ECL biosensors allow for cost-effective, rapid, and real-time detection with excellent sensitivity and selectivity, with the capability of integrating different biomolecules and CNMs on the same chip. However, currently there is not a single review, which includes CNM-based electrochemical and ECL biosensors' current progress and trends. Therefore, this review intends to survey the current progress and future trends in CNM-based electrochemical and ECL biosensors.  相似文献   

6.
Electrochemical biosensors are highly compatible with modern advancements in magnetic nanomaterials. In particular, the versatile nature of magnetic nanomaterials as a universal platform for selective isolation of diverse forms of cancer biomarkers in body circulation, is highly synergistic with electrochemical biosensors for elevating biosensing performance to unprecedented levels. Such diverse circulating target biomolecules include cell surface proteins of circulating tumor cells and extracellular vesicles (EVs), as well as circulating tumor nucleic acids (i.e. ctDNA/ctRNA). This focussed review serves to discuss the latest work in the fields of magnetic nanomaterials and electrochemistry to tackle existing analysis challenges of diverse circulating biomarkers in cancer.  相似文献   

7.
Bipolar electrochemistry (BPE) contrasts very much with conventional electrochemistry because it is based on the control of the solution potential instead of the working electrode potential. In a typical setup, a piece of conducting materials is immersed in an electrolyte and submitted to an electric field. Such conditions split the interfacial nature of the materials into cathodic and anodic domains where electrochemical reactions can readily take place. BPE has many potential applications, and the present contribution aims to focus on recent analytical applications that involve electrogenerated chemiluminescence (ECL) detection. ECL is a special case of luminescence where the excited state of the luminophore is populated after a sequence of reaction that is triggered by an initial electron transfer step occurring at the electrode surface. The coupling between BPE and ECL is a powerful approach because it provides a unique opportunity to combine the intrinsic advantages of both techniques. BPE enables the spatial separation of sensing and reporting poles, whereas ECL provides a simple and sensitive visual readout. This opinion article will describe the experimental possibilities and the most recent applications of BPE/ECL coupling for the detection of biorelevant molecular targets.  相似文献   

8.
The electrochemistry and electrogenerated chemiluminescence (ECL) of four kinds of electron donor–acceptor molecules exhibiting thermally activated delayed fluorescence (TADF) is presented. TADF molecules can harvest light energy from the lowest triplet state by spin up‐conversion to the lowest singlet state because of small energy gap between these states. Intense green to red ECL is emitted from the TADF molecules by applying a square‐wave voltage. Remarkably, it is shown that the efficiency of ECL from one of the TADF molecule could reach about 50 %, which is comparable to its photoluminescence quantum yield.  相似文献   

9.
Yu Jiang  Jayne Wu 《Electrophoresis》2019,40(16-17):2084-2097
Recent years have witnessed ever expanding use of biosensors in the fields of environmental monitoring, homeland security, pharmaceutical, food and bioprocessing, and agricultural industries. To produce effective and reliable biosensors, good quality immobilization of biological recognition elements is critical. Chitosan and its nanocomposites emerge as an excellent immobilization matrix on biosensor surface. As a natural polysaccharide, chitosan has many useful characteristics, such as high permeability and mechanical strength, biocompatibility and non‐toxicity, availability, and low cost. Due to the presence of amino and hydroxyl groups on chitosan, chitosan can easily crosslink with a variety of nanomaterials. This investigation of chitosan nanocomposite‐based biosensors presents recent development and innovations in the preparation of chitosan nanocomposites in coordination with biosensors for various bio‐detection applications, including chitosan nanocomposites formed with carbon nanomaterials, various inorganic and biological complexes. These chitosan nanocomposite based biosensors have demonstrated good sensitivity selectivity and stability for the detection of different types of targets ranging from glucose, proteins, DNAs, small biomolecules to bacteria. It is in our hope that this review will offer guidance for the development of novel biosensors and open up opportunities in the field of biosensor research.  相似文献   

10.
This critical review covers the use of carbon nanomaterials (single-wall carbon nanotubes, multi-wall carbon nanotubes, graphene, and carbon quantum dots), semiconductor quantum dots, and composite materials based on the combination of the aforementioned materials, for analytical applications using electrogenerated chemiluminescence. The recent discovery of graphene and related materials, with their optical and electrochemical properties, has made possible new uses of such materials in electrogenerated chemiluminescence for biomedical diagnostic applications. In electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), electrochemically generated intermediates undergo highly exergonic reactions, producing electronically excited states that emit light. These electron-transfer reactions are sufficiently exergonic to enable the excited states of luminophores, including metal complexes, quantum dots and carbon nanocrystals, to be generated without photoexcitation. In particular, this review focuses on some of the most advanced and recent developments (especially during the last five years, 2010–2014) related to the use of these novel materials and their composites, with particular emphasis on their use in medical diagnostics as ECL immunosensors.  相似文献   

11.
Electrochemiluminescence (ECL) integrates the advantages of electrochemical detection and chemiluminescent techniques. The method has received particular attention because it is highly sensitive and selective, has a wide linear range but low reagent costs. The use of nanomaterials with their unique physical and chemical properties has led to new kinds of biosensors that exhibit high sensitivity and stability. Compared to other nanomaterials, DNA nanostructures are more biocompatible, more hydrophilic, and thus less prone to nonspecific adsorption onto the electrode surface. We describe here a label-free and ultrasensitive ECL biosensor for detecting a cancer-associated microRNA at a femtomolar level. We have designed two auxiliary probes that cause the formation of a long-range self-assembly in the form of a μm-long 1-dimensional DNA concatamer. These can be used as carriers for signal amplification. The intercalation of the ECL probe Ru(phen)3 2+ into the grooves of the concatamers leads to a substantial increase in ECL intensity. This amplified sensor shows high selectivity for discriminating complementary target and other mismatched RNAs. The biosensor enables the quantification of the expression of microRNA-21 in MCF-7 cells. It also displays very low limits of detection and provides an alternative approach for the detection of RNA or DNA detection in diagnostics and gene analysis.
Figure
The long-range self-assembly DNA concatamers were used as carriers for signal amplification by the intercalation of numerous ECL probe (Ru(phen)3 2+) into the grooves of the DNA concatamers. Such signal amplification strategy lead to a substantial increase in ECL intensity and sensitivity.  相似文献   

12.
The electrochemistry and radical ion annihilation electrogenerated chemiluminescence (ECL) of 9,9'-spirobifluorene-bridged bipolar systems containing 1,3,4-oxadiazole-conjugated oligoaryl and triarylamine substituents were investigated. The stability of the oxidized spirobifluorenes was improved by functionalization with triarylamine centers. These donor-acceptor (DA) compounds exhibited a good fluorescence efficiency with an emission maximum that correlated with the potential difference between radical anion and cation formation, suggesting a charge transfer (CT) emission band. An ECL mechanism based on the formation of the CT excited state by radical ion annihilation or production of the triplet state followed by triplet-triplet annihilation, with perhaps some excimer contribution, is proposed.  相似文献   

13.
Unique structured nanomaterials can facilitate the direct electron transfer between redox proteins and the electrodes. Here, in situ directed growth on an electrode of a ZnO/Cu nanocomposite was prepared by a simple corrosion approach, which enables robust mechanical adhesion and electrical contact between the nanostructured ZnO and the electrodes. This is great help to realize the direct electron transfer between the electrode surface and the redox protein. SEM images demonstrate that the morphology of the ZnO/Cu nanocomposite has a large specific surface area, which is favorable to immobilize the biomolecules and construct biosensors. Using glucose oxidase (GOx) as a model, this ZnO/Cu nanocomposite is employed for immobilization of GOx and the construction of the glucose biosensor. Direct electron transfer of GOx is achieved at ZnO/Cu nanocomposite with a high heterogeneous electron transfer rate constant of 0.67 ± 0.06 s(-1). Such ZnO/Cu nanocomposite provides a good matrix for direct electrochemistry of enzymes and mediator-free enzymatic biosensors.  相似文献   

14.
Organic nanoparticles (ONPs) are one type of nanoparticles assembled by the organic compounds with one dimension smaller than 100 nm. ONPs are alternative nanomaterials in organic light-emitting diode and analytical applications due to their unique optical and electrochemical properties. In electrogenerated chemiluminescence (ECL) assays, ONPs are generally taken as signal reporters for chemical sensing and biosensing. In this opinion, we focus on recent developments of ONPs as ECL luminophores in analytical application. The types and ECL mechanisms of ONPs systems and the approaches of ONPs-based ECL methods are briefly introduced. New advances on the improvement of the ECL efficiency of ONPs are highlighted. The challenges and perspectives of ONPs-based ECL methods are discussed.  相似文献   

15.
合成了水溶性硒化镉(CdSe)量子点,利用组装技术和静电吸附作用,将带正电荷的血红蛋白(Hb)和带负电荷的CdSe量子点层层组装到壳聚糖(chit)修饰的玻碳电极(GCE)表面,构建基于{Hb/CdSe}n多层膜的无电子媒介体的电流型生物传感器({Hb/CdSe}3/chit/GCE).运用紫外-可见吸收光谱、电致化学发光、交流阻抗和循环伏安技术来表征修饰膜,并研究传感器的作用机理、性能及分析应用.结果表明:与量子点薄膜法及量子点/血红蛋白复合物法等固载血红蛋白的其他方法相比,层层组装法能显著提高血红蛋白的固定量,保持血红蛋白的生物活性,增强传感器的灵敏度和稳定性.传感器检测H2O2的线性范围为4.0×10-8~4.8×10-6 mol·L-1(r=0.999 1),检测限为2.0×10-8mol·L-l.多层膜的电致化学发光研究,表明修饰电极有望用于电致化学发光传感器的制备.  相似文献   

16.
Analytical applications of electrogenerated chemiluminescence (ECL) are reviewed with emphasis on the years 1997-2000. Recent developments are described for the ECL of organics, metal complexes and clusters, cathodic ECL on oxide covered electrodes, ECL based immunosensors, DNA-probe assays and enzymatic biosensors. Mechanisms are given for polyaromatic hydrocarbons, luminol/hydrogen peroxide, some cathodic ECL reactions and ruthenium complexes with and without co-reactants. New developments and improvements of techniques and instrumentation and their application to analytes are described. The application of ECL for visualisation of electrochemical processes and imaging of surfaces is mentioned.  相似文献   

17.
This review discusses briefly the preparation, electrochemistry, and electrogenerated chemiluminescence (ECL) as well as spectroscopic properties of organic nanoparticles. Organic nanoparticles, ranging from several tens of nanometers to hundreds of nanometers in diameter, were successfully prepared by various methods. Using a simple reprecipitation method, organic nanoparticles of a very small size can be prepared and show unique electrochemical and ECL characteristics. As with inorganic nanoparticles, organic nanoparticles suggest possible applications, like labels for the analysis of biological materials with ECL.  相似文献   

18.
Very recently, there is a great research interest in electrochemiluminescence (ECL) featuring thermally activated delayed fluorescence (TADF) properties, i.e., TADF-ECL. It is appealing since the earlier reports in this topic well-confirmed that this strategy has a great potential in achieving all-exciton-harvesting ECL efficiency under electrochemical excitation, which is a breakthrough in the topic of organic ECL. However, organic phase electrochemistry and ECL studies surrounding TADF-ECL are still extremely rare. Especially, the ECL spectra of previous reported TADF emitters are still very different from their PL spectra. In this work, we systematically measure and discuss the liquid electrochemistry and ECL behavior of two typical TADF molecules in organic medium. Most importantly, we verify for the first time that the ECL spectra of them (coreactant ECL mode) are identical to their PL spectra counterparts, which confirms the effectiveness of TADF photophysical properties in the coreactant ECL mode in practice.  相似文献   

19.
The design and development of modern biosensors for sensitive and selective detection of various biomarkers is important in diversified arenas including healthcare, environment, and food industries etc. The requirement of more robust and reliant biosensors lead to the development of various sensing modules. The nanomaterials having specific optical, electrical, and mechanical strength can pave the way towards development of ultrafast, robust, and miniaturized modules for biosensors. It can provide not only the point‐of‐care applicability but also has tremendous commercial as well as industrial justification. In order to improve the performance of the sensor systems, various nanostructure materials have been readily studied and applied for development of novel biosensors. In the last few years, researchers are engaged on harnessing the unique atomic and molecular properties of advance‐engineered materials including carbon nanotubes, graphene nanosheets, metal nanoparticles, metal oxide nanoparticles, and their nano‐conjugates. In view of such recent developments in nanomaterial engineering, the current review has been formulated emphasizing the role of these materials in surface engineering, biomolecule conjugation, and signal amplification for development of various ultrasensitive and robust biosensors having commercial as well as industrial viability. Attention is given on the electrochemical biosensors incorporating various nanomaterials and their conjugates. Importance of nanomaterials in the analytical performance of the various biosensor has also been discussed. To put a perceptive insights on the importance of various nanomaterials, an extended table is incorporated, which includes probe design, analyte, LOD, and dynamic range of various electrochemical biosensors.  相似文献   

20.

This review discusses briefly the preparation, electrochemistry, and electrogenerated chemiluminescence (ECL) as well as spectroscopic properties of organic nanoparticles. Organic nanoparticles, ranging from several tens of nanometers to hundreds of nanometers in diameter, were successfully prepared by various methods. Using a simple reprecipitation method, organic nanoparticles of a very small size can be prepared and show unique electrochemical and ECL characteristics. As with inorganic nanoparticles, organic nanoparticles suggest possible applications, like labels for the analysis of biological materials with ECL.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号