首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as transparent electrodes for organic light‐emitting diodes (OLEDs) are doped with a new solvent 1,3‐dimethyl‐2‐imidazolidinone (DMI) and are optimized using solvent post‐treatment. The DMI doped PEDOT:PSS films show significantly enhanced conductivities up to 812.1 S cm−1. The sheet resistance of the PEDOT:PSS films doped with DMI is further reduced by various solvent post‐treatment. The effect of solvent post‐treatment on DMI doped PEDOT:PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PEDOT:PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PEDOT:PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PEDOT:PSS films with the new solvent of DMI can be a promising transparent electrode for low‐cost, efficient ITO‐free white OLEDs.

  相似文献   


2.
Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐structured metal–organic framework/graphene/carbon nanotubes hybrids. The confined ultra‐small‐volume reaction, give well‐defined hybrids with a large specific‐surface‐area (1206 m2 g?1), abundant ionic‐channels (narrow pore of 0.86 nm), and nitrogen active‐sites (10.63 %), resulting in high pore‐size utilization (97.9 %) and redox‐activity (32.3 %). We also propose a scalable microfluidic‐blow‐spinning method to consecutively generate nanofibre‐based flexible supercapacitor electrodes with striking flexibility and mechanical strength. The supercapacitors display large volumetric energy density (147.5 mWh cm?3), high specific capacitance (472 F cm?3) and stably deformable energy‐supply.  相似文献   

3.
The design of complex heterostructured electrode materials that deliver superior electrochemical performances to their individual counterparts has stimulated intensive research on configuring supercapacitors with high energy and power densities. Herein we fabricate hierarchical tectorum‐like α‐Fe2O3/polypyrrole (PPy) nanoarrays (T‐Fe2O3/PPy NAs). The 3D, and interconnected T‐Fe2O3/PPy NAs are successfully grown on conductive carbon cloth through an easy self‐sacrificing template and in situ vapor‐phase polymerization route under mild conditions. The electrode made of the T‐Fe2O3/PPy NAs exhibits a high areal capacitance of 382.4 mF cm−2 at a current density of 0.5 mA cm−2 and excellent reversibility. The solid‐state asymmetric supercapacitor consisting of T‐Fe2O3/PPy NAs and MnO2 electrodes achieves a high energy density of 0.22 mWh cm−3 at a power density of 165.6 mW cm−3.  相似文献   

4.
We report a rational design of a sulfur heterocyclic quinone (dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone=DTT) used as a cathode (uptake of four lithium ions to form Li4DTT) and a conductive polymer [poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)=PEDOT:PSS) used as a binder for a high‐performance rechargeable lithium‐ion battery. Because of the reduced energy level of the lowest unoccupied molecular orbital (LUMO) caused by the introduced S atoms, the initial Li‐ion intercalation potential of DTT is 2.89 V, which is 0.3 V higher than that of its carbon analog. Meanwhile, there is a noncovalent interaction between DTT and PEDOT:PSS, which remarkably suppressed the dissolution and enhanced the conductivity of DTT, thus leading to the great improvement of the electrochemical performance. The DTT cathode with the PEDOT:PSS binder displays a long‐term cycling stability (292 mAh g?1 for the first cycle, 266 mAh g?1 after 200 cycles at 0.1 C) and a high rate capability (220 mAh g?1 at 1 C). This design strategy based on a noncovalent interaction is very effective for the application of small organic molecules as the cathode of rechargeable lithium‐ion batteries.  相似文献   

5.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

6.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   

7.
Free‐standing 2D porous nanomaterials have attracted considerable interest as ideal candidates of 2D film electrodes for planar energy storage devices. Nevertheless, the construction of well‐defined mesopore arrays parallel to the lateral surface, which facilitate fast in‐plane ionic diffusion, is a challenge. Now, a universal interface self‐assembly strategy is used for patterning 2D porous polymers, for example, polypyrrole, polyaniline, and polydopamine, with cylindrical mesopores on graphene nanosheets. The resultant 2D sandwich‐structured nanohybrids are employed as the interdigital microelectrodes for the assembly of planar micro‐supercapacitors (MSCs), which deliver outstanding volumetric capacitance of 102 F cm?3 and energy density of 2.3 mWh cm?3, outperforming most reported MSCs. The MSCs display remarkable flexibility and superior integration for boosting output voltage and capacitance.  相似文献   

8.
Two novel alternating π‐conjugated copolymers, poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P1 ) and poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(p‐octylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P2 ), were synthesized via the Suzuki coupling method and their optoelectronic properties were investigated. The resulting polymers P1 and P2 were completely soluble in various common organic solvents and their weight‐average molecular weights (Mw) were 5.66 × 104 (polydispersity: 1.97) and 2.13× 104 (polydispersity: 1.54), respectively. Bulk heterojunction (BHJ) solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5)/TiOx/Al configurations. The BHJ solar cell with P1 :PC70BM (1:5) has a power conversion efficiency (PCE) of 1.12% (Jsc= 3.39 mA/cm2, Voc= 0.67 V, FF = 49.31%), measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. We fabricated polymer light‐emitting diodes (PLEDs) in ITO/PEDOT:PSS/emitting polymer:polyethylene glycol (PEG)/Ba/Al configurations. The electroluminescence (EL) maxima of the fabricated PLEDs varied from 526 nm to 556 nm depending on the ratio of the polymer to PEG. The turn‐on voltages of the PLEDs were in the range of 3–8 V depending on the ratio of the polymer to PEG, and the maximum brightness and luminance efficiency were 2103 cd/m2 and 0.37 cd/A at 12 V, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3169–3177, 2010  相似文献   

9.
A set of novel conjugated polyfluorene co‐ polymers, poly[(9,9′‐didecylfluorene‐2,7‐diyl)‐co‐(4,7′‐di‐2‐thienyl‐ 2′,1′,3′‐benzothiadiazole‐5,5‐diyl)‐co‐(pyrene‐1,6‐diyl)], are synthesized via Pd(II)‐mediated polymerization from 2,7‐bis(4′,4′,5′, 5′‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)‐9,9′‐di‐n‐decylfluorene, 4, 7‐di(2‐bromothien‐5‐yl)‐2,1,3‐benzothiadiazole, and 1,6‐dibromopyrene with a variety of monomer molar ratios. The field‐effect carrier mobilities and optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The hole mobilities of the copolymers are found to be in the range 7.0 × 10?5 ? 8.0 × 10?4 cm2 V?1 s?1 and the on/off ratios were 8 × 103 ? 7 × 104. Conventional polymer solar cells (PSCs) with the configuration ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al are fabricated. Under optimized conditions, the polymers display power conversion efficiencies (PCEs) for the PSCs in the range 1.99–3.37% under AM 1.5 illumination (100 mW cm?2). Among the four copolymers, P2, containing a 2.5 mol % pyrene component incorporated into poly[9,9′‐didecylfluorene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PFDTBT) displays a PCE of 3.37% with a short circuit current of 9.15 mA cm?2, an open circuit voltage of 0.86 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Conducting polymer hydrogels that are capable of contacting with electrolytes at the molecular level, represent an important electrode material. However, the fabrication of self-standing hydrogels merely composed of conducting polymers is still challenging owing to the absence of reliable methods. Herein, a novel and facile macromolecular interaction assisted route is reported to fabricate self-standing hydrogels consisting of polyaniline (PANi: providing high electrochemical activity) and poly(3,4-ethylenedioxythiophene) (PEDOT: enabling high electronic conductivity). Owing to the synergistic effect between them, the self-standing hydrogels possess good mechanical properties and electronic/electrochemical performances, making them an excellent potential electrode for solid-state energy storage devices. A proof-of-concept all-hydrogel-state supercapacitor is fabricated, which exhibits a high areal capacitance of 808.2 mF cm−2, and a high energy density of 0.63 mWh cm−3 at high power density of 28.42 mW cm−3, superior to many recently reported conducting polymer hydrogels based supercapacitors. This study demonstrates a novel promising strategy to fabricate self-standing conducting polymer hydrogels.  相似文献   

12.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   

13.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

14.
As conventional organic solvents present inherent toxicity, deep eutectic solvents (DES) have been considered as excellent candidates due to their green characteristics. In this work, thermoelectric properties enhancement of PEDOT:PSS films is achieved by introducing DES as an additive and post‐treatment reagent. Direct addition and post‐treatment approaches lead to a maximum Seebeck coefficient of 29.1 μV K?1 and electrical conductivity of 620.6 S cm?1, respectively. In addition, an optimal power factor is obtained by DES post‐treatment, reaching up to 24.08 μW m?1 K?2, which is approximately four orders of magnitude higher than the pure PEDOT:PSS. Assuming a thermal conductivity of 0.17 W m?1 K?1, the maximum ZT value is estimated to be 0.042 at 300 K. Further, atomic force microscopy and X‐ray photoelectron spectroscopy are performed and suggest that the remarkably enhanced electrical conductivity originates from the removal of the excess insulating PSS and the phase separation between the PEDOT and PSS chains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 885–892  相似文献   

15.
We report a novel multicomponent mixed‐valence oxyhydroxide‐based electrode synthesized by electrochemical polarization of a de‐alloyed nanoporous NiCuMn alloy. The multicomponent oxyhydroxide has a high specific capacitance larger than 627 F cm?3 (1097±95 F g?1) at a current density of 0.25 A cm?3, originating from multiple redox reactions. More importantly, the oxyhydroxide electrode possesses an extraordinarily wide working‐potential window of 1.8 V in an aqueous electrolyte, which far exceeds the theoretically stable window of water. The realization of both high specific capacitance and high working‐potential windows gives rise to a high energy density, 51 mWh cm?3, of the multicomponent oxyhydroxide‐based supercapacitor for high‐energy and high‐power applications.  相似文献   

16.
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid‐state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline–polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g?1). The flexible solid‐state supercapacitor based on PPH provides a large capacitance (306 mF cm?2 and 153 F g?1) and a high energy density of 13.6 Wh kg?1, superior to other flexible supercapacitors. The robustness of the PPH‐based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge–discharge cycles. The high activity and robustness enable the PPH‐based supercapacitor as a promising power device for flexible electronics.  相似文献   

17.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
Water‐soluble electrically conductive polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) was synthesized by the enzymatic‐catalyzed method using 3,4‐ethylenedioxythiophene (EDOT) as monomer, poly(styrenesulfonate) (PSS) as water‐soluble polyelectrolyte, horseradish peroxidase enzyme as catalyst, and hydrogen peroxide (H2O2) as oxidant. Fourier transform infrared spectra and UV–vis absorption spectra confirm the successful enzymatic‐catalyzed polymerization of PEDOT. Dynamic light scattering data confirm the formation of a stable PEDOT:PSS aqueous dispersion. The thermo gravimetric data show that the obtained PEDOT is stable over a fairly high range of temperatures. The atomic force microscopy height images show that the PEDOT:PSS aqueous dispersion can form excellent homogeneous and smooth films on various substrates by conventional solution processing techniques, which renders this PEDOT:PSS aqueous dispersion a very promising candidate for various application in electronic devices. This enzymatic polymerization is a new approach for the synthesis of optical and electrical active PEDOT polymer, which benefits simple setting, high yields, and environmental friendly route. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A novel in situ N and low‐valence‐state Mo dual doping strategy was employed to significantly improve the conductivity, active‐site accessibility, and electrochemical stability of MoO3, drastically boosting its electrochemical properties. Consequently, our optimized N‐MoO3?x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber‐shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber‐shaped ASC and MFC device based on the N‐MoO3?x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm?3 and a remarkable power density of 0.76 μW cm?1, respectively. Such a bifunctional fiber‐shaped N‐MoO3?x electrode opens the way to integrate the electricity generation and storage for self‐powered sources.  相似文献   

20.
Summary: The electrochemical behaviour of four types of (phenylene ethynylene)‐alt‐(phenylene vinylene) hybrid polymers, 1 , 2 , 3 , and 4 have been investigated with respect to the influence of the grafted alkoxy side chains. In the case of the fully substituted polymers 2 , 3 , and 4 , the strong insulating nature of longer linear octadecyl or bulky branched 2‐ethylhexyl side chains lowers the HOMO levels of the polymers thereby increasing the discrepancy, ΔEg, between the electrochemical, Eequation/tex2gif-stack-1.gif, and the optical, Eequation/tex2gif-stack-2.gif, bandgap energies. Thus it is not possible to establish a direct correlation between the open circuit voltage, VOC, of bulk heterojunction solar cell devices of the configuration glass substrate/ITO/PEDOT:PSS/polymer 3 :PCBM(1:3, w/w)/LiF/Al and the HOMO energy levels of polymer 3 solely, as postulated in the literature. The photovoltaic (PV) parameters greatly depend on the grafted side chains.

Linear IV curves of solar cell devices from polymers 3a – d , measured in the dark and under 100 mW · cm−2 solar simulator illumination.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号