首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on a close-packed transition metal surface, Pd(111), and a more open surface, Pd(100), aiming to shed light on surface structure effects on reaction pathways and reactivity, an important issue in catalysis. Reaction pathways on both surfaces at two different coverages have been studied. It is found that the reaction pathways on both surfaces possess crucial common features despite the fact that they have different surface symmetries. Having determined reaction barriers in these systems, we find that the reaction on Pd(111) is strongly coverage dependent. Surface coverages, however, have little effect on the reaction on Pd(100). Calculations also reveal that the low coverage reactions are structure sensitive while the medium coverage reactions are not. Detailed discussions on these results are given.  相似文献   

2.
First-principles density functional theory calculations are carried out to evaluate energy barriers and mechanisms for the dehydrogenation reactions of CH4 on clean and oxygen-covered surfaces of Cu (111) and Ni (111) with low and moderate oxygen coverage. In the presence of oxygen, two possible pathways have been evaluated. The more likely pathway, which is further analyzed, is that CH4 loses an H to the surface O. Results from this pathway agree with previous findings showing that oxygen promotes CH4 dissociation on Cu (111) and hinders that on Ni (111). In addition, our results show lower energy barriers on Cu with higher oxygen coverages up to 0.38 monolayer. However, such an increase in oxygen coverage did not show any favorable effect for CH4 dissociation on Ni (111). The findings are analyzed through electronic factors revealed by charge analysis and density of states.  相似文献   

3.
The effect of alloying Pd with Ag on the hydrogenation of acetylene is examined by analyzing the chemisorption of all potential C(1) (atomic carbon, CH, methylene, and methyl) and C(2) (acetylene, vinyl, ethylene, ethyl, ethane, ethylidene, ethylidyne, and vinylidene) surface intermediates and atomic hydrogen along with the reaction energies for the elementary steps that produce these intermediates over Pd(111), Pd(75%)Ag(25%)/Pd(111), Pd(50%)Ag(50%)/Pd(111), and Ag(111) surfaces by using first-principle density functional theoretical (DFT) calculations. All of the calculations reported herein were performed at 25% surface coverage. The adsorption energies for all of the C(1) and C(2) intermediates decreased upon increasing the composition of Ag in the surface. Both geometric as well as electronic factors are responsible for the decreased adsorption strength. The modes of adsorption as well as the strengths of adsorption over the alloy surfaces in a number of cases were characteristically different than those found over pure Pd (111) and Ag (111). Adsorbates tend to minimize their interaction with the Ag atoms in the alloy surface. An electronic analysis of these surfaces shows that there is, in general, a shift in the occupied d-band states away from the Fermi level when Pd is alloyed with Ag. The s and p states also appear to contribute and may be responsible for small deviations from the Hammer-N?rskov model. The effect of alloying is more pronounced on the calculated reaction energies for different possible surface elementary reactions. Alloying Pd with Ag reduces the exothermicity (increases endothermicity) for bond-breaking reactions. This is consistent with experimental results that show a decrease in the decomposition products in moving from pure Pd to Pd-Ag alloys.(2-5) In addition, alloying increases the exothermicity of bond-forming reactions. Alloying therefore not only helps to suppress the unfavorable decomposition (bond-breaking) reaction rates but also helps to enhance the favorable hydrogenation (bond-forming) reaction rates.  相似文献   

4.
Sulfur, a pollutant known to poison fuel‐cell electrodes, generally comes from S‐containing species such as hydrogen sulfide (H2S). The S‐containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O2 into gaseous SO2. According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO2 are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO2 formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO2 desorption at either room temperature or high temperatures.  相似文献   

5.
The adsorption of atomic oxygen and carbon was studied with plane wave density functional theory on four Ni surfaces, Ni(110), Ni(111), Ni(210), and Ni(531). Various adsorption sites on these surfaces are examined in order to identify the most favorable adsorption site for each atomic species. The dependence of surface bonding on adsorbate coverage is also investigated. Adsorption energies and structural information are obtained and compared with existing experimental results for Ni(110) and Ni(111). In addition, activation barriers to CO dissociation have been determined on Ni(111) and Ni(531) by locating the transition states for these processes. Our results indicate that the binding energies of C are comparatively stronger on stepped surfaces than on flat surfaces, and the energy barriers associated with CO dissociation strongly favor reactions occurring near surface steps.  相似文献   

6.
Various sizes of Ag particles were grown on highly oriented pyrolytic graphite (HOPG) surfaces, which had previously been modified with nanopits to act as anchoring sites. Surface reactions of O2, CHCl3, and CCl4 on the Ag particles and bulk Ag(111) surfaces were studied by X-ray photoelectron spectroscopy (XPS), and it has been shown that size dependence of O2 and CHCl3 reactions on Ag differs from that of CCl4. Weak reactions of O2 and CHCl3 were observed on the bulk Ag(111) surfaces, while strong reactions occur on Ag particles with medium Ag coverage, suggesting that the reactions are controlled by the number of surface defect sites. On the contrary, the dissociation of CCl4 is mainly determined by the exposed Ag facet area, mainly Ag(111) facet, and strong dissociation reaction happens on the bulk Ag(111) surface. The results suggest that the size effects, which are often discussed in heterogeneous catalysis, are strongly dependent on the reaction mechanism.  相似文献   

7.
Self-assembled thiol monolayers bound to single-crystal Au(111) surfaces containing a terminal olefin have been prepared and used to monitor electrochemically the cross-metathesis (CM) between the surface and an olefin-terminated ferrocenyl (Fc) derivative from solution over time. Mixed SAM surfaces were prepared by first adsorbing a diluent for 2 days followed by the olefinic alkanethiol for known adsorption time intervals; three diluents of varying length were used. The oxidation peak areas from the voltammetry show the CM reaction yields a maximum amount of product at 100-150 min. Beyond this time, thiol desorption is apparent and the Fc oxidation peaks diminished. A kinetic simulation of the interfacial reactions involving CM and desorption reactions are described and aided in the interpretation of the voltammetric responses. The length of the diluent and the coverage of surface olefins were important factors in limiting undesirable self-CM reactions on the surface, and a model of the relationship between the diluent and surface concentration of olefin is described. This study shows that attention to monolayer formation and reaction conditions are important parameters when maximizing CM yields on surfaces.  相似文献   

8.
采用密度泛函理论(DFT)计算了Pd(111)表面含有N(N=1-4)个Au原子数目时的表面形成能,选取最优构型进一步研究了噻吩在Au/Pd(111)双金属表面的吸附模式及加氢脱硫反应过程.结果表明:当Pd(111)表面含有1个Au原子时,其形成能最低.在Au/Pd(111)双金属表面噻吩初始吸附于Pd-Hcp-30°位时,其构型最稳定.在各加氢脱硫过程中,反应总体均放出热量.对于直接脱硫机理,其所需活化能较低,但脱硫产物较难控制;对于间接脱硫机理,反应最有可能按照顺式加氢方式进行,C―S键断裂开环时所需活化能最高,是反应的限速步骤.此外,与单一Au(111)面及Pd(111)面相比,Au/Pd(111)双金属表面限速步骤的反应能垒最低,表明AuPd双金属催化剂比Au、Pd单金属催化剂更有利于噻吩加氢脱硫反应的进行.  相似文献   

9.
采用密度泛函理论(DFT)计算了Pd(111)表面含有N(N=1-4)个Au原子数目时的表面形成能,选取最优构型进一步研究了噻吩在Au/Pd(111)双金属表面的吸附模式及加氢脱硫反应过程. 结果表明:当Pd(111)表面含有1个Au原子时,其形成能最低. 在Au/Pd(111)双金属表面噻吩初始吸附于Pd-Hcp-30°位时,其构型最稳定. 在各加氢脱硫过程中,反应总体均放出热量. 对于直接脱硫机理,其所需活化能较低,但脱硫产物较难控制;对于间接脱硫机理,反应最有可能按照顺式加氢方式进行,C―S键断裂开环时所需活化能最高,是反应的限速步骤. 此外,与单一Au(111)面及Pd(111)面相比,Au/Pd(111)双金属表面限速步骤的反应能垒最低,表明AuPd双金属催化剂比Au、Pd单金属催化剂更有利于噻吩加氢脱硫反应的进行.  相似文献   

10.
Recent experiments have shown that organic monolayers on silicon surfaces can be formed through the optically activated surface reaction of H-terminated Si surfaces with terminally unsaturated organic molecules (Eves et al. J. Am. Chem. Soc. 2004, 126, 14318; Sun et al. J. Am. Chem. Soc. 2005, 127, 2514). Possible mechanisms for the formation of this monolayer involve the abstraction of a H atom either at the same attachment site of the molecule (Path A) or from a neighboring site (Path B). Using periodic Density Functional Theory calculations together with an efficient method for finding reaction pathways, we examine both optically activated reaction mechanisms for an alkene and an aldehyde reacting with H-Si(111). Our results show that while Path A is energetically more favorable its significant barrier is likely to limit its viability. Path B on the other hand encounters a much lower H atom abstraction barrier and appears to be more viable.  相似文献   

11.
Examinations of CO2 formed during steady-state CO oxidation reactions were performed using infrared (IR) chemiluminescence. The CO2 was formed using a molecular-beam method over Pd(110) and Pd(111). The CO2 formation rate is temperature dependent under various partial pressure conditions. The temperature of the maximum formation rate is denoted as TSmax. Analyses of IR emission spectra at surface temperatures higher than TSmax showed that the average vibrational temperature (TVAV) is higher for Pd(111) than for Pd(110). The antisymmetric vibrational temperature (TVAS) is almost equal on both surfaces. These results suggest that the activated CO2 complex is more bent on Pd(111) and straighter on Pd(110). Furthermore, the difference in the TVAV value was small for surface temperatures less than TSmax. The TVAS value was much higher than TVAV on both surfaces. These phenomena were observed only when the surface temperature was lower than TSmax: they became more pronounced at lower temperatures, suggesting that the activated complex of CO2 formation is much straighter on both Pd surfaces than that observed at higher surface temperatures. Combined with kinetic results, the higher CO coverage at the lower surface temperatures is inferred to be related to the linear activated complex of CO2 formation.  相似文献   

12.
Si(111) surfaces modified by covalent Si-CH=CH-CH3 functionality, with no intervening oxide, show coverage of all atop Si sites and superior chemical stability in ambient conditions and water, as compared with molecules that form nearly full coverage (e.g., Si-C C-CH3 and Si-CH3 surfaces).  相似文献   

13.
The infrared (IR) chemiluminescence spectra of CO2 were measured during the steady-state CO + O2 reaction over Pt(110) and Pt(111) surfaces. Analysis of the IR emission spectra indicates that the bending vibrational temperature (TVB), as well as the antisymmetric vibrational temperature (TVAS), was higher on Pt(110) than on Pt(111). On the Pt(110) surface, the highly excited bending vibrational mode compared to the antisymmetric vibrational mode was observed under reaction conditions at low CO coverage (theta(CO) < 0.2) or at high surface temperatures (TS > or = 700 K). This can be related to the activated complex of CO2 formation in a more bent form on the inclined (111) terraces of the Pt(110)(1 x 2) structure. On the other hand, at high CO coverage (theta(CO) > 0.2) or at low surface temperatures (TS < 650 K), TVAS was higher than TVB, which can be caused by the reconstruction of the Pt(110)(1 x 2) surface to the (1 x 1) form with high CO coverage.  相似文献   

14.
Reaction mechanisms for the interactions between CeO(2)(111) and (110) surfaces are investigated using periodic density functional theory (DFT) calculations. Both standard DFT and DFT+U calculations to examine the effect of the localization of Ce 4f states on the redox chemistry of H(2)-CeO(2) interactions are described. For mechanistic studies, molecular and dissociative local minima are initially located by placing an H(2) molecule at various active sites of the CeO(2) surfaces. The binding energies of physisorbed species optimized using the DFT and DFT+U methods are very weak. The dissociative adsorption reactions producing hydroxylated surfaces are all exothermic; exothermicities at the DFT level range from 4.1 kcal mol(-1) for the (111) to 26.5 kcal mol(-1) for the (110) surface, while those at the DFT+U level are between 65.0 kcal mol(-1) for the (111) and 81.8 kcal mol(-1) for the (110) surface. Predicted vibrational frequencies of adsorbed OH and H(2)O species on the surfaces are in line with available experimental and theoretical results. Potential energy profiles are constructed by connecting molecularly adsorbed and dissociatively adsorbed intermediates on each CeO(2) surface with tight transition states using the nudged elastic band (NEB) method. It is found that the U correction method plays a significant role in energetics, especially for the intermediates of the exit channels and products that are partially reduced. The surface reduction reaction on CeO(2)(110) is energetically much more favorable. Accordingly, oxygen vacancies are more easily formed on the (110) surface than on the (111) surface.  相似文献   

15.
On‐surface Pd‐ and Cu‐catalyzed C?C coupling reactions between phenyl bromide functionalized porphyrin derivatives on an Au(111) surface have been investigated under ultra‐high vacuum conditions by using scanning tunneling microscopy and kinetic Monte Carlo simulations. We monitored the isothermal reaction kinetics by allowing the reaction to proceed at different temperatures. We discovered that the reactions catalyzed by Pd or Cu can be described as a two‐phase process that involves an initial activation followed by C?C bond formation. However, the distinctive reaction kinetics and the C?C bond‐formation yield associated with the two catalysts account for the different reaction mechanisms: the initial activation phase is the rate‐limiting step for the Cu‐catalyzed reaction at all temperatures tested, whereas the later phase of C?C formation is the rate‐limiting step for the Pd‐catalyzed reaction at high temperature. Analysis of rate constants of the Pd‐catalyzed reactions allowed us to determine its activation energy as (0.41±0.03) eV.  相似文献   

16.
CO2在金属表面活化的UBI-QEP方法研究   总被引:1,自引:0,他引:1  
应用UBI-QEP方法估算了金属表面上形成的活化吸附态CO2-在Cu(111),Pd(111),Fe(111)和Ni(111)表面上的吸附热,计算了各种相关反应的活化能垒.结果表明,CO2-在4种过渡金属表面的相对稳定性的顺序为Fe>Ni>Cu>Pd;在Fe和Ni表面上CO2-较易生成,且容易进一步发生解离反应,在Fe表面会解离成C和O吸附原子,而在Ni表面上解离的最终产物为CO和O;在Cu表面上,CO2-虽较难形成,但其加氢反应的活化能比解离反应低,因此加氢反应是其进一步活化的有效模式;在Pd表面上,CO2-吸附态在能量上很不稳定,所以CO2在Pd表面上不容易活化.  相似文献   

17.
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas–surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water–gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Twenty kinds of adsorptions of HCN on the Fe(100), Fe(111) and Fe(110) surfaces at the 1/4 monolayer coverage are found using the density functional theory. For Fe(100), the adsorption energy of the most stable configuration where the HCN locates at the fourfold site with the C-N bonded to four Fe atoms is 1.928 eV. The most favored adsorption structure for HCN on Fe(111) is f-η3(N)-h-η3(C), in which the C-N bond is almost parallel to the surface, and the adsorption energy is 1.347 eV. On Fe(110), the adsorption energy in the most stable configuration in which HCN locates at the two long-bridge sites is 1.777 eV. The adsorption energy of the parallel orientation for HCN is larger than that of the perpendicular configuration. The binding mechanism of HCN on the Fe(100), Fe(111) and Fe(110) surfaces is also analyzed by Mulliken charge population and the density of states in HCN. The result indicates that the configurations in which the adsorbed HCN becomes the non-linear are beneficial to the formation of the addition reaction for hydrogen. The nature that the introduction of Fe into the catalyst could increase the catalytic activity of the bimetallic catalyst in the addition reaction of hydrogen for nitriles is revealed.  相似文献   

19.
Methanol steam reforming, catalyzed by Pd/ZnO (PdZn alloy), is a potential source of hydrogen for on-board fuel cells. CO has been reported to be a minor side product of methanol decomposition that occurs in parallel to methanol steam reforming on PdZn catalysts. However, fuel cells currently used in vehicles are very sensitive to CO poisoning. To contribute to the understanding of pertinent reaction mechanisms, we employed density functional slab model calculations to study the decomposition of formaldehyde, a key intermediate in methanol decomposition and steam reforming reactions, on planar surfaces of Pd, Cu, and PdZn as well as on a stepped surface of PdZn. The calculated activation energies indicate that dehydrogenation of formaldehyde is favorable on Pd(111), but unfavorable on Cu(111) and PdZn(111). On the stepped PdZn(221) surface, the dehydrogenation process was calculated to be more competitive to formaldehyde desorption than on PdZn(111). Thus, we ascribe the experimentally observed small amount of CO, formed during steam reforming of methanol on the Pd/ZnO catalyst, to occur at metallic Pd species of the catalyst or at defect sites of PdZn alloy.  相似文献   

20.
利用密度泛函理论研究了Pt(111)面及Pt14团簇对肉桂醛(CAL)的吸附作用和不完全加氢的反应机理。分析吸附能结果表明,肉桂醛分子以C=O与C=C键协同吸附在Pt(111)面上的六角密积(Hcp)位最稳定,以C=C键吸附在Pt14团簇上最稳定,且在Pt14团簇上的吸附作用较Pt(111)面更强。由过渡态搜索并计算得到的反应能垒及反应热可知,肉桂醛在Pt(111)面和Pt14团簇上均较容易对C=O键加氢得到肉桂醇(COL)。其中,优先加氢O原子为最佳反应路径,即Pt无论是平板还是团簇对肉桂醛加氢均有较好的选择性。同时发现,肉桂醛分子在Pt(111)面的加氢反应能垒较Pt14团簇上更低,即Pt的催化活性及对肉桂醛加氢产物选择性与其结构密切相关,其中,Pt(111)面对生成肉桂醇更加有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号