首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magneto‐plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near‐infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto‐plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.  相似文献   

2.
Programming intelligent DNA nanocarriers for the targeted transport of molecular payloads in living cells has attracted extensive attention. In vivo activation of these nanocarriers usually relies on external light irradiation. An interest is emerging in the automatic recognition of intracellular surroundings by nanocarriers and their in situ activation under the control of programmed DNA‐computation circuits. Herein, we report the integration of DNA circuits with framework nucleic acid (FNA) nanocarriers that consist of a truncated square pyramid (TSP) cage and a built‐in duplex cargo containing an antisense strand of the target mRNA. An i‐motif and ATP aptamer embedded in the TSP are employed as logic‐controlling units to respond to H+ and ATP inside cellular compartments, triggering the release of the sensing element for fluorescent mRNA imaging. Logic‐controlled FNA devices could be used to target drug delivery, enabling precise disease treatment.  相似文献   

3.
Vicinal‐sulfydryl‐containing peptides/proteins (VSPPs) play a crucial role in human pathologies. Fluorescent probes that are capable of detecting intracellular VSPPs in vivo would be useful tools to explore the mechanisms of some diseases. In this study, by regulating the spatial separation of two maleimide groups in a fluorescent dye to match that of two active cysteine residues contained in the conserved amino acid sequence (–CGPC–) of human thioredoxin, two active‐site‐matched fluorescent probes, o‐Dm‐Ac and m‐Dm‐Ac, were developed for real‐time imaging of VSPPs in living cells. As a result, the two probes can rapidly respond to small peptide models and reduced proteins, such as WCGPCK (W‐6), WCGGPCK (W‐7), and WCGGGPCK (W‐8), reduced bovine serum albumin (rBSA), and reduced thioredoxin (rTrx). Moreover, o‐Dm‐Ac displays a higher binding sensitivity with the above‐mentioned peptides and proteins, especially with W‐7 and rTrx. Furthermore, o‐Dm‐Ac was successfully used to rapidly and directly detect VSPPs both in vitro and in living cells. Thus, a novel probe‐design strategy was proposed and the synthesized probe applied successfully in imaging of target proteins in situ.  相似文献   

4.
Single‐strand oligo‐DNA‐modified Au nanoparticles (AuNPs) undergo aggregation in the presence of poly(L ‐lysine) (PLL), which is attributed to the interactions between the oligo‐DNA and PLL. These interactions between the oligo‐DNA and PLL were identified to be electrostatic when the lysine residues of PLL were positively charged and to be hydrogen bonding when the residues were deprotonated. The aggregation was promoted with an increase in the pH value at a pH level lower than the pKa value of PLL (pKa≈10.0) due to the gradual deprotonation of the lysine residues and thus suppressed electrostatic interactions between the positively charged lysine residues of PLL and the negatively charged backbone phosphate groups of the oligo‐DNA. At pH levels higher than the pKa value of PLL, the aggregation was identified to be dominated by the hydrogen bonds between the bases of the oligo‐DNA and the deprotonated lysine residues of PLL. This study prompts the possibility that the spectral, and thus color, change of AuNPs upon aggregation can be used as a probe to follow the interactions between oligo‐DNA and polypeptides.  相似文献   

5.
The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy‐associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9‐dimethyl methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light‐induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub‐G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy‐associated cell death and S‐phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53‐related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity.  相似文献   

6.
Thermosensitive poly(N‐isopropylacrylamide) (PNIPAm)‐coated gold nanoparticles (AuNPs) were prepared by self‐assembly of the azobenzene‐terminated PNIPAm on the surface of the α‐cyclodextrin (α‐CD)‐capped AuNPs via the host–guest molecular recognition between α‐CD and azobenzene. Reversible attachment–detachment of azobenzene‐terminated PNIPAm on the surface of α‐CD‐capped AuNPs was achieved when subjected to visible and UV light irradiation alternately, which endowed thermosensitive AuNPs with tunable smart properties.

  相似文献   


7.
Reaction of [M(NO)Cl3(NCMe)2] (M=Mo, W) with (iPr2PCH2CH2)2PPh (etpip) at room temperature afforded the syn/anti‐[M(NO)Cl3(mer‐etpip)] complexes (M=Mo, a ; W, b ; 3 a,b (syn,anti); syn and anti refer to the relative position of Ph(etpip) and NO). Reduction of 3 a,b (syn,anti) produced [M(NO)Cl2(mer‐etpip)] ( 4 a,b (syn)), [M(NO)Cl(NCMe)(mer‐etpip)] ( 5 a,b (syn,anti)), and [M(NO)Cl(η2‐ethylene)(mer‐etpip)] ( 6 a,b (syn,anti)) complexes. The hydrides [M(NO)H(η2‐ethylene)(mer‐etpip)] ( 7 a,b (syn,anti)) were obtained from 6 a,b (syn,anti) using NaHBEt3 (75 °C, THF) or LiBH4 (80 °C, Et3N), respectively. 7 a,b (syn,anti) were probed in olefin hydrogenations in the absence or presence of a hydrosilane/B(C6F5)3 mixture. The 7 a,b (syn,anti)/Et3SiH/B(C6F5)3 co‐catalytic systems were highly active in various olefin hydrogenations (60 bar H2, 140 °C), with maximum TOFs of 5250 h?1 ( 7 a (syn,anti)) and 8200 h?1 ( 7 b (syn,anti)) for 1‐hexene hydrogenation. The Et3SiH/(B(C6F5)3 co‐catalyst is anticipated to generate a [Et3Si]+ cation attaching to the ONO atom. This facilitates NO bending and accelerates catalysis by providing a vacant site. Inverse DKIE effects were observed for the 7 a (syn,anti)/Et3SiH/(B(C6F5)3 (kH/kD=0.55) and the 7 b (syn,anti)/Et3SiH/(B(C6F5)3 (kH/kD=0.65) co‐catalytic mixtures (20 bar H2/D2, 140 °C).  相似文献   

8.
9.
Dual‐photosensitized stable EuΙΙΙ and TbΙΙΙ complexes, namely [Eu(dpq)(tfnb)3] ( 1 ) and [Tb(dpq)(tfnb)3] ( 2 ), in which dpq=dipyrido[3,2‐d:2′,3′‐f]quinoxaline and Htfnb=4,4,4‐trifluoro‐1‐(2‐napthyl)‐1,3‐butanedione, were designed as bioimaging and light‐responsive therapeutic agents. Their X‐ray structures, photophysical properties, biological interactions, photoinduced DNA damage, photocytotoxicity, and cellular uptake properties were studied. Discrete mononuclear complexes adopt an eight‐coordinated {LnN2O6} distorted square antiprism geometry with bidentate N,N‐donor dpq and O,O‐donor tfnb ligands. The designed probes have the advantage of dual‐sensitizing antennae (dpq, Htfnb) to modulate their desirable optical properties for cellular imaging and light‐responsive intracellular damage. The remarkable photostability, absence of inner‐sphere water (q<1), and longer excited‐state lifetimes of the complexes make them suitable as cellular‐imaging probes. The dpq 3T state is well located energetically to allow efficient energy transfer (ET) to the emissive 5D0 and 5D4 states of EuΙΙΙ and TbΙΙΙ. This leads to higher quantum yields (φ=0.15–0.20) in aqueous media and makes these compounds suitable cellular‐imaging probes. The complexes display significant binding ability toward DNA and bovine serum albumin (K≈105 m ?1). They effectively cleave supercoiled DNA to its nicked circular form at λ=365 nm through photoredox pathways. The cellular internalization studies showed cytosolic and nuclear localization. The remarkable photocytotoxicity of these probes offers a strategy towards developing photoresponsive LnΙΙΙ probes as cellular‐imaging and phototherapeutic agents.  相似文献   

10.
The stereoselective synthesis of anti isomers of γ‐boryl‐substituted homoallylic alcohols is disclosed. (E)‐1,2‐Di(boryl)alk‐1‐enes undergo Ru‐catalyzed double‐bond transposition with control of the geometry. The in situ generated (E)‐1,2‐di(boryl)alk‐2‐enes add to aldehydes in a stereospecific manner. The alkenylboron group within the product is amenable to a variety of synthetic derivatizations.  相似文献   

11.
An efficient synthetic route to the concave‐shaped, potentially ionophoric syn‐ and anti‐isomers of 5,6,11,12,17,18‐hexahydro‐5,18:6,11:12,17‐triepoxytrinaphthylene ( 4 ) was elaborated. Starting from ‘oxabenzonorbornadiene’ ( 5 ), the stannylated precursor 9 was prepared in three steps, followed by cyclotrimerization catalyzed by copper(I) thiophene‐2‐carboxylate (CuTC) , which afforded 4 in a syn/anti ratio of 5 : 4.  相似文献   

12.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

13.
Quantum dots (QDs) hold great promise for the molecular imaging of cancer because of their superior optical properties. Although cell‐surface biomarkers can be readily imaged with QDs, non‐invasive live‐cell imaging of critical intracellular cancer markers with QDs is a great challenge because of the difficulties in the automatic delivery of QD probes to the cytosol and the ambiguity of intracellular targeting signals. Herein, we report a new type of DNA‐templated heterobivalent QD nanoprobes with the ability to target and image two spatially isolated cancer markers (nucleolin and mRNA) present on the cell surface and in the cell cytosol. Bypassing endolysosomal sequestration, this type of QD nanoprobes undergo macropinocytosis following the nucleolin targeting and then translocate to the cytosol for mRNA targeting. Fluorescence resonance energy transfer (FRET) based confocal microscopy enables unambiguous signal deconvolution of mRNA‐targeted QD nanoprobes inside cancer cells.  相似文献   

14.
The benefits to intracellular drug delivery from nanomedicine have been limited by biological barriers and to some extent by targeting capability. We investigated a size‐controlled, dual tumor‐mitochondria‐targeted theranostic nanoplatform (Porphyrin‐PEG Nanocomplexes, PPNs). The maximum tumor accumulation (15.6 %ID g?1, 72 h p.i.) and ideal tumor‐to‐muscle ratio (16.6, 72 h p.i.) was achieved using an optimized PPN particle size of approximately 10 nm, as measured by using PET imaging tracing. The stable coordination of PPNs with 177Lu enables the integration of fluorescence imaging (FL) and photodynamic therapy (PDT) with positron emission tomography (PET) imaging and internal radiotherapy (RT). Furthermore, the efficient tumor and mitochondrial uptake of 177Lu‐PPNs greatly enhanced the efficacies of RT and/or PDT. This work developed a facile approach for the fabrication of tumor‐targeted multi‐modal nanotheranostic agents, which enables precision and radionuclide‐based combination tumor therapy.  相似文献   

15.
Developing gold nanoparticles (AuNPs) with well‐designed functionality is highly desirable for boosting the performance and versatility of inorganic–organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4‐piperazinyl‐1,8‐naphthalimide‐functionalized AuNPs for the realization of quantitative recognition of FeIII ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1) quantity‐controlled chelation‐mode transformation of the piperazinyl moiety on the AuNPs towards FeIII, thereby resulting in an aggregation–dispersion conversion of the AuNPs in solution, and 2) photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation–dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.  相似文献   

16.
We report a new polymorph of (1E,4E)‐1,5‐bis(4‐fluorophenyl)penta‐1,4‐dien‐3‐one, C17H12F2O. Contrary to the precedent literature polymorph with Z′ = 3, our polymorph has one half molecule in the asymmetric unit disordered over two 50% occupancy sites. Each site corresponds to one conformation around the single bond vicinal to the carbonyl group (so‐called anti or syn). The other half of the bischalcone is generated by twofold rotation symmetry, giving rise to two half‐occupied and overlapping molecules presenting both anti and syn conformations in their open chain. Such a disorder allows for distinct patterns of intermolecular C—H…O contacts involving the carbonyl and anti‐oriented β‐C—H groups, which is reflected in three 13C NMR chemical shifts for the carbonyl C atom. Here, we have also assessed the cytotoxicity of three symmetric bischalcones through their in vitro antitumour potential against three cancer cell lines. Cytotoxicity assays revealed that this biological property increases as halogen electronegativity increases.  相似文献   

17.
The positional change of nitrogen‐7 of the RNA constituent guanosine to the bridgehead position‐5 leads to the base‐modified nucleoside 5‐aza‐7‐deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton‐acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all‐purine' DNA and DNA with silver‐mediated base pairs. The present work reports the single‐crystal X‐ray structure of 7‐iodo‐5‐aza‐7‐deazaguanosine, C10H12IN5O5 ( 1 ). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4′‐endo) for the ribose moiety, with an antiperiplanar orientation of the 5′‐hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7‐iodo substituent forms a contact to oxygen‐2′ of the ribose moiety. Self‐pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H…O and N—H…O). The concept of pK‐value differences to evaluate base‐pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all‐purine' RNA. Furthermore, the 7‐iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy.  相似文献   

18.
The synthesis, structure, and solution‐state behavior of clothespin‐shaped binuclear trans‐bis(β‐iminoaryloxy)palladium(II) complexes doubly linked with pentamethylene spacers are described. Achiral syn and racemic anti isomers of complexes 1 – 3 were prepared by treating Pd(OAc)2 with the corresponding N,N′‐bis(β‐hydroxyarylmethylene)‐1,5‐pentanediamine and then subjecting the mixture to chromatographic separation. Optically pure (100 % ee) complexes, (+)‐anti‐ 1 , (+)‐anti‐ 2 , and (+)‐anti‐ 3 , were obtained from the racemic mixture by employing a preparative HPLC system with a chiral column. The trans coordination and clothespin‐shaped structures with syn and anti conformations of these complexes have been unequivocally established by X‐ray diffraction studies. 1H NMR analysis showed that (±)‐anti‐ 1 , (±)‐anti‐ 2 , syn‐ 2 , and (±)‐anti‐ 3 display a flapping motion by consecutive stacking association/dissociation between cofacial coordination planes in [D8]toluene, whereas syn‐ 1 and syn‐ 3 are static under the same conditions. The activation parameters for the flapping motion (ΔH and ΔS) were determined from variable‐temperature NMR analyses as 50.4 kJ mol?1 and 60.1 J mol?1 K?1 for (±)‐anti‐ 1 , 31.0 kJ mol?1 and ?22.7 J mol?1 K?1 for (±)‐anti‐ 2 , 29.6 kJ mol?1 and ?57.7 J mol?1 K?1 for syn‐ 2 , and 35.0 kJ mol?1 and 0.5 J mol?1 K?1 for (±)‐anti‐ 3 , respectively. The molecular structure and kinetic parameters demonstrate that all of the anti complexes flap with a twisting motion in [D8]toluene, although (±)‐anti‐ 1 bearing dilated Z‐shaped blades moves more dynamically than I‐shaped (±)‐anti‐ 2 or the smaller (±)‐anti‐ 3 . Highly symmetrical syn‐ 2 displays a much more static flapping motion, that is, in a see‐saw‐like manner. In CDCl3, (±)‐anti‐ 1 exhibits an extraordinary upfield shift of the 1H NMR signals with increasing concentration, whereas solutions of (+)‐anti‐ 1 and the other syn/anti analogues 2 and 3 exhibit negligible or slight changes in the chemical shifts under the same conditions, which indicates that anti‐ 1 undergoes a specific heterochiral association in the solution state. Equilibrium constants for the dimerizations of (±)‐ and (+)‐anti‐ 1 in CDCl3 at 293 K were estimated by curve‐fitting analysis of the 1H NMR chemical shift dependences on concentration as 26 M ?1 [KD(racemic)] and 3.2 M ?1 [KD(homo)], respectively. The heterochiral association constant [KD(hetero)] was estimated as 98 M ?1, based on the relationship KD(racemic)=1/2 KD(homo)+1/4 KD(hetero). An inward stacking motif of interpenetrative dimer association is postulated as the mechanistic rationale for this rare case of heterochiral association.  相似文献   

19.
Integration of imaging data across different molecular target types can provide in‐depth insight into cell physiology and pathology, but remains challenging owing to poor compatibility between target‐type‐specific labeling methods. We show that cross‐platform imaging analysis can be readily achieved through DNA encoding of molecular targets, which translates the molecular identity of various target types into a uniform in situ array of ssDNA tags for subsequent labeling with complementary imaging probes. The concept was demonstrated through multiplexed imaging of mRNAs and their corresponding proteins with multicolor quantum dots. The results reveal heterogeneity of cell transfection with siRNA and outline disparity in RNA interference (RNAi) kinetics at the level of both the mRNA and the encoded protein.  相似文献   

20.
The synthesis of hydrophilic lanthanide‐doped nanocrystals (Ln3+‐NCs) with molecular recognition ability for bioimaging currently remains a challenge. Herein, we present an effective strategy to circumvent this bottleneck by encapsulating Ln3+‐NCs in graphene oxide (NCs@GO). Monodisperse NCs@GO was prepared by optimizing GO size and core–shell structure of NaYF4:Yb,Er@NaYF4, thus combining the intense visible/near‐infrared II (NIR‐II) luminescence of NCs and the unique surface properties and biomedical functions of GO. Such nanostructures not only feature broad solvent dispersibility, efficient cell uptake, and excellent biocompatibility but also enable further modifications with various agents such as DNA, proteins, or nanoparticles without tedious procedures. Moreover, we demonstrate in proof‐of‐concept experiments that NCs@GO can realize simultaneous intracellular tracking and microRNA‐21 visualization, as well as highly sensitive in vivo tumor‐targeted NIR‐II imaging at 1525 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号