首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Highly efficient and diastereodivergent aza‐Diels–Alder reactions have been developed to access either diastereomeric series of benzofuran‐fused δ‐lactams and dihydropyridines in nearly perfect stereoselectivity (d.r. >20:1, >99 % ee for all examples). The complementarity of N‐heterocyclic carbene and chiral amine as the catalyst was demonstrated for the first time, together with an excellent level of catalytic efficiency (1 mol % loading).  相似文献   

2.
Computational analysis shows that the enantioselectivity of asymmetric Lewis‐acid organocatalysis of the Diels–Alder cycloaddition of cyclopentadiene to cinnamates arises from stacking interactions that favor the addition of the diene to the more hindered face of the dienophile, while electrostatic interactions control the diastereoselectivity by selectively stabilizing the endo transition state. These results not only explain the stereoselectivity of these silylium‐ion‐ACDC reactions but should also guide the development of more effective ion‐pairing asymmetric organocatalysts.  相似文献   

3.
The first enantioselective total synthesis of (−)‐cycloclavine was accomplished in 8 steps and 7.1 % overall yield. Key features include the first catalytic asymmetric cyclopropanation of allene, mediated by the dirhodium catalyst Rh2(S‐TBPTTL)4, and the enone 1,2‐addition of a new TEMPO carbamate methyl carbanion. An intramolecular strain‐promoted Diels–Alder methylenecyclopropane (IMDAMC) reaction provided a pivotal tricyclic enone intermediate with more than 99 % ee after crystallization. The synthesis of (−)‐ 1 was completed by a late‐stage intramolecular Diels–Alder furan (IMDAF) cycloaddition to install the indole.  相似文献   

4.
The first catalytic asymmetric inverse‐electron‐demand (IED) oxa‐Diels–Alder reaction of ortho‐quinone methides, generated in situ from ortho‐hydroxybenzyl alcohols, has been established. By selecting 3‐methyl‐2‐vinylindoles as a class of competent dienophiles, this approach provides an efficient strategy to construct an enantioenriched chroman framework with three adjacent stereogenic centers in high yields and excellent stereoselectivities (up to 99 % yield, >95:5 d.r., 99.5:0.5 e.r.). The utilization of ortho‐hydroxybenzyl alcohols as precursors of dienes and 3‐methyl‐2‐vinylindoles as dienophiles, as well as the hydrogen‐bonding activation mode of the substrates met the challenges of a catalytic asymmetric IED oxa‐Diels–Alder reaction.  相似文献   

5.
Vinyl azide with a pendent diene can undergo thermal decomposition to a related azirine intermediate, which was used immediately in an intramolecular aza‐Diels–Alder reaction to furnish an aziridine‐containing trans‐fused tricyclic core structure with excellent stereoselectivity. The method provides a facile entry to complex polycyclic alkaliods which can be further elaborated by ring‐opening reactions and ring expansion of the aziridine moiety, as well as by dihydroxylation of the alkene group.  相似文献   

6.
The use of the ionic liquid/n‐hexane interface as a new class of reaction medium for the Diels–Alder reaction gives large rate enhancements of the order of 106 to 108 times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H‐bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity.  相似文献   

7.
The unprecedented phospha‐aza‐Diels–Alder reaction between an activated electron‐poor imine and 2H‐phospholes yields 1‐phospha‐2‐azanorbornenes in a highly chemoselective and moderately diastereoselective reaction. The intermediate 2H‐phospholes, which act as dienes, are formed in situ from the corresponding 1H‐phospholes. Theoretical calculations confirm that the phospha‐aza‐Diels–Alder reaction is of normal electron demand. The reactive P?N bond in 1‐phospha‐2‐azanorbornenes can be cleaved by nucleophiles leading to the formation of 2,3‐dihydrophospholes.  相似文献   

8.
A microporous polymer is prepared by a catalyst‐free Diels–Alder reaction. A cyclopentadiene with both a diene and a dienophile functionality and a dienophilic maleimide are used for the Diels–Alder reaction. 1,3,5‐Tris(bromomethyl)‐2,4,6‐trimethylbenzene is reacted with sodium cyclopentadienide to produce the multicyclopentadiene‐functionalized monomer. A crosslinked polymer ( CDAP ) is obtained by the reaction of the cyclopentadiene monomer with N,N′‐1,4‐phenylenedimaleimide. The thermal dissociation of the cyclopentadiene dimeric unit and the subsequent Diels–Alder reaction with the maleimide group are investigated by the model reaction. We are able to restructure the crosslinked polymer network by taking advantage of the thermal reversibility of the Diels–Alder linkage. After the post thermal treatment, the BET surface area of the polymer ( CDAP‐T ) is greatly increased from 317 to 1038 m2 g?1. CDAP‐T is functionalized with pyrene by bromination with N‐bromosuccinimide and the subsequent substitution reaction with aminopyrene. The adsorption property of the pyrene‐functionalized polymer for an aromatic dye is investigated using malachite green. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646–3653  相似文献   

9.
An unprecedented catalytic asymmetric inverse‐electron‐demand aza‐Diels–Alder reaction of indoles with in situ formed azoalkenes is reported. A diverse set of [2,3]‐fused indoline heterocycles were achieved in generally good yields (up to 97 %) with high regioselectivity and diastereoselectivity (>20:1 d.r.), and with excellent enantioselectivity (up to 99 % ee).  相似文献   

10.
A bioinsipred gold‐catalyzed tandem Diels–Alder/Diels–Alder reaction of an enynal and a 1,3‐diene, forming the highly‐strained benzotricyclo[3.2.1.02,7]octane skeleton, was reported. In contrast, a Diels–Alder/Friedel–Crafts tandem reaction occurred instead when silver salts were used as the catalyst. Although both reactions experienced the similar Diels–Alder reaction of a pyrylium intermediate with a 1,3‐diene, they have different reaction mechanisms. The former proceeded with a stepwise Diels–Alder reaction, while the latter one with a concerted one.  相似文献   

11.
Diels–Alder reactions of 5‐methylthio‐2‐vinyl‐1H‐pyrroles with maleimides followed by isomerization gave tetrahydroindoles in moderate to good yield. Aromatization using activated MnO2 in refluxing toluene gave the corresponding 2‐methylthioindoles in good yields, and demethylthioation using Raney nickel gave the 2‐H indoles in excellent yields. The protection of the adducts produced aromatization in improved yield, demonstrating the effectiveness of the methylthio group as a protecting group for pyrroles; however, 5‐methylthio‐2‐vinylpyrrole was shown to perform with slightly less efficiency than 2‐vinylpyrrole in Diels–Alder reactions, indicating the protective group was more deactivating than desired. This route toward indoles offers high convergency and conveniently available starting materials that are easily purified. Bis‐methylthioated vinylpyrroles were shown to have potential as highly activated Diels–Alder dienes.  相似文献   

12.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

13.
An enantioselective chemical synthesis of arene cis‐dihydrodiols has been realized from 2‐pyrones through sequential ytterbium‐catalyzed asymmetric inverse‐electron‐demand Diels–Alder (IEDDA) reaction of 2‐pyrones and retro‐Diels–Alder extrusion of CO2. By using this strategy, a series of substituted arene cis‐dihydrodiols can be obtained efficiently with high enantioselectivity (>99 % ee in many cases). Based on this strategy, efficient and concise asymmetric total syntheses of (+)‐MK7607 and 1‐epi‐(+)‐MK7607 were accomplished.  相似文献   

14.
Complexity‐increasing Domino reactions comprising C?H allenylation, a Diels–Alder reaction, and a retro‐Diels–Alder reaction were realized by a versatile catalyst derived from earth‐abundant, non‐toxic manganese. The C?H activation/Diels–Alder/retro‐Diels–Alder alkyne annulation sequence provided step‐economical access to valuable indolone alkaloid derivatives through a facile organometallic C?H activation manifold with transformable pyridines.  相似文献   

15.
A versatile π‐extension reaction was developed based on the three‐component cross‐coupling of aryl halides, 2‐haloarylcarboxylic acids, and norbornadiene. The transformation is driven by the direction and subsequent decarboxylation of the carboxyl group, while norbornadiene serves as an ortho ‐C−H activator and ethylene synthon via a retro‐Diels–Alder reaction. Comprehensive DFT calculations were performed to account for the catalytic intermediates.  相似文献   

16.
The Diels–Alder reaction is one of the most important C?C bond‐forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio‐ and diastereoselectivity. The Diels–Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple‐turnover, stereoselectivity, and up to 1100‐fold rate acceleration. Here, a new generation of anthracene‐BODIPY‐based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93‐fold upon reaction with N‐pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme‐catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91 % de and >99 % ee. The stereochemistry of the major product was determined unambiguously by rotating‐frame nuclear Overhauser NMR spectroscopy (ROESY‐NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first.  相似文献   

17.
A catalytically active aluminum‐based system for Diels–Alder transformations is reported. The system was generated by mixing a β‐diketiminate‐stabilized aluminum bistriflate compound with Na[BArCl4] (ArCl=3,5‐Cl2C6H3). Solid‐state analysis of the catalytic system reveals a unique structure incorporating a two‐dimensional coordination polymer. According to the experimental results obtained from several Diels–Alder transformations, the aluminum‐based system appears to be a more practical and more robust alternative to the recently reported compounds based on carbon and silicon cations.  相似文献   

18.
A palladium‐catalyzed asymmetric intramolecular allylic C−H amination controlled by a chiral phosphoramidite ligand was established for the preparation of various substituted chiral hydropyrimidinones, the precursors of hydropyrimidines, in high yields with high enantioselectivities. In particular, dienyl sodium N ‐sulfonyl amides bearing an arylethene‐1‐sulfonyl group underwent a sequential allylic C−H amination and intramolecular Diels–Alder (IMDA) reaction to produce chiral fused tricyclic tetrahydropyrimidinone frameworks in high yields and with high levels of stereoselectivity. Significantly, this method was used as the key step in an asymmetric synthesis of letermovir.  相似文献   

19.
Chiral N‐dienyl lactams are crucial building blocks for the synthesis of complex organic compounds. However, their generation is rather challenging. This paper reports the novel one‐pot reaction of (S)‐methyl pyroglutamate as the a mide component with different a ldehydes and d ienophiles (AAD reaction) to give novel chiral 1‐amido‐2‐cyclohexenes. The corresponding N‐dienyl lactams generated in situ undergo subsequent Diels–Alder reactions in good yield and diastereoselectivity. The scope and limitations of the three‐component protocol were investigated. X‐ray and NMR spectroscopic analysis of the products as well as DFT calculations of the intermediates were also performed to explain the observed stereoselectivity and structural features.  相似文献   

20.
An efficient and short entry to polyfunctionalized linear triquinanes from 2‐methoxyphenols is described by utilizing the following chemistry. The Diels–Alder reactions of masked o‐benzoquinones, derived from 2‐methoxyphenols, with cyclopentadiene afford tricyclo[5.2.2.02,6]undeca‐4,10‐dien‐8‐ones. Photochemical oxa‐di‐π‐methane (ODPM) rearrangements and 1,3‐acyl shifts of the Diels–Alder adducts are investigated. The ODPM‐rearranged products are further converted to linear triquinanes by using an O‐stannyl ketyl fragmentation. Application of this efficient strategy to the total synthesis of (±)‐Δ9(12)‐capnellene was accomplished from 2‐methoxy‐4‐methylphenol in nine steps with 20 % overall yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号