首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5,15‐Dioxaporphyrin was synthesized for the first time by a nucleophilic aromatic substitution reaction of a nickel bis(α,α′‐dibromodipyrrin) complex with benzaldoxime, followed by an intramolecular annulation of the α‐hydroxy‐substituted intermediate. This unprecedented molecule is a 20π‐electron antiaromatic system, in terms of Hückel's rule of aromaticity, because lone pair electrons of oxygen atoms are incorporated into the 18π‐electron conjugated system of the porphyrin. A theoretical analysis based on the gauge‐including magnetically induced current method confirmed its antiaromaticity and a dominant inner ring pathway for the ring current. The unique reactivity of 5,15‐dioxaporphyrin forming a β,β‐linked dimer upon oxidation was also revealed.  相似文献   

2.
The π contribution to the electron localization function (ELF) is used to compare 4nπ‐ and (4n+2)π‐electron annulenes, with particular focus on the aromaticity of 4nπ‐electron annulenes in their lowest triplet state. The analysis is performed on the electron density obtained at the level of OLYP density functional theory, as well as at the CCSD and CASSCF ab initio levels. Two criteria for aromaticity of all‐carbon annulenes are set up: the span in the bifurcation values ΔBV(ELFπ) should be small, ideally zero, and the bifurcation value for ring closure of the π basin RCBV(ELFπ) should be high (≥ 0.7). On the basis of these criteria, nearly all 4nπ‐electron annulenes are aromatic in their lowest triplet states, similar to (4n+2)π‐electron annulenes in their singlet ground states. For singlet biradical cyclobutadiene and cyclooctatetraene constrained to D4h and D8h symmetry, respectively, the RCBV(ELFπ) at the CASSCF level is lower (0.531 and 0.745) than for benzene (0.853), even though they have equal proportions of α‐ and β‐electrons.  相似文献   

3.
π‐Stacked polymers, which consist of layered π‐electron systems in a polymer, can be expected to be used in molecular electronic devices. However, the construction of a stable π‐stacked structure in a polymer is considerably challenging because it requires sophisticated designs and precise synthetic methods. Herein, we present a novel π‐stacked architecture based on poly(quinolylene‐2,3‐methylene) bearing alanine derivatives as the side chain, obtained through the living cyclo‐copolymerization of an o‐allenylaryl isocyanide. In the resulting polymer, the neighboring quinoline rings of the main chain form a layered structure with π–π interactions, which is stabilized by intramolecular hydrogen bonds. The vicinal quinoline units form two independent helices and the whole molecule is a twisted‐tape structure. This structure is established on the basis of UV/CD spectra, theoretical calculations, and atomic‐force microscopy.  相似文献   

4.
New routes to ladder‐type phenylene materials 1 and 2 are described. The oligomers 1 and 2 , which possess a “3π‐2spiro” architecture, have been synthesized by using extended diketone derivatives 3 and 10 as key intermediates. The physicochemical properties of the new blue‐light emitter 2 were studied in detail and compared with those of the less‐extended 1 . Owing to the recent development of fluorenone derivatives and their corresponding more conjugated analogues as potential electron‐transport materials in organic light‐emitting diodes (OLEDs) and as n‐type materials for photovoltaic applications, we also report herein the thermal, optical and electrochemical behavior of the key intermediates, diketones 3 and 10 . Finally, the application of dispiro 2 as a new light‐emitting material in OLEDs is reported.  相似文献   

5.
The first examples of β–β directly linked, acetylene‐bridged, and butadiyne‐bridged 5,15‐diazaporphyrin dimers have been prepared by palladium‐catalyzed coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl). The effects of the linking modes and meso‐nitrogen atoms on the structural, optical, electrochemical, and magnetic properties of the distributed π systems were investigated by using X‐ray crystallography, UV/Vis absorption spectroscopy, DFT calculations, cyclic voltammetry, and ESR spectroscopy. Both the electronic and steric effects of the meso‐nitrogen atoms play an important role in the highly coplanar geometry of the directly linked dimers. The direct β–β linkage produces enhanced π conjugation and electron‐spin coupling between the two diazaporphyrin units.  相似文献   

6.
Carbon tetrabromide and bromoform are employed as prototypical electron acceptors to demonstrate the charge‐transfer nature of various intermolecular complexes with three different structural types of electron donors represented by (1) halide and pseudohalide anions, (2) aromatic (π‐bonding) hydrocarbons, and (3) aromatics with (n‐bonding) oxygen or nitrogen centers. UV–Vis spectroscopy identifies the electronic transition inherent to such [1:1] complexes; and their Mulliken correlation with the donor/acceptor strength verifies the relevant charge‐transfer character. X‐ray crystallography of CBr4/HCBr3 complexes with different types of donors establishes the principal structural features of halogen bonding. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:449–459, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20264  相似文献   

7.
《化学:亚洲杂志》2017,12(17):2311-2317
π‐Extended dihydrophenazines were successfully prepared by oxidation of 2‐(N ‐arylamino)anthracenes. Their roof‐type conformations were revealed by X‐ray diffraction analysis, and the analysis of the optical properties indicated the presence of intramolecular charge‐transfer processes. Upon chemical oxidation, the electronic absorption dramatically changed in a two‐step fashion. The electron spin resonance (ESR) analysis revealed that, depending on the amount of oxidant added, either a paramagnetic radical cation or a diamagnetic dication was generated. The NMR analysis revealed a conformational change upon oxidation, which was supported by theoretical calculations. A three‐state electrochromic behavior was observed during the electrochemical oxidation and reduction cycles, showing sequential switching between visible and near‐infrared (NIR) absorption properties upon application of electrochemical stimuli.  相似文献   

8.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

9.
Two C2‐symmetric meso‐alkynylporphyrins, namely 5,15‐bis[(4‐butyl‐2,3,5,6‐tetrafluorophenyl)ethynyl]‐10,20‐dipropylporphyrin, C50H42F8N4, (I), and 5,15‐bis[(4‐butylphenyl)ethynyl]‐10,20‐dipropylporphyrin, C50H50N4, (II), show remarkable π–π stacking that forms columns of porphyrin centers. The tetrafluorophenylene moieties in (I) show intermolecular interactions with each other through the F atoms, forming one‐dimensional ribbons. No significant π–π interactions are observed in the plane of the phenylene and tetrafluorophenylene moieties in either (I) or (II). The molecules of both compounds lie about inversion centers.  相似文献   

10.
Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo‐ring formation reactions proceed non‐enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo‐ring formation and 8π‐6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non‐enzymatic conversion to shimalactones in the dark.  相似文献   

11.
The high reactivity of 6π‐electrocyclization in polar solvents has remained one of the important challenges for diarylethenes because of the emergence of a twisted intramolecular charge transfer (TICT) state at the excited state in such polar media, which usually quenches the photocyclization reaction. Herein we report on the preparation and highly efficient photocyclization of 2,3‐diarylbenzo[b]thiophenes with nonsymmetric side‐aryl units in a polar solvent. While the dithiazolylbenzo[b]thiophene showed a suppressed quantum yield of 6π‐electrocyclization of 54 % in methanol, the replacement of a thiazole unit with a thiophene ring led to a photon‐quantitative 6π‐cyclization reaction. The nonsymmetrical modification into the side‐aryl units was considered to enhance the CH/π interactions between side‐aryl units to support a photoreactive conformation in methanol. The stabilization of the photochromic reactive conformation is expected to suppress the formation of the TICT state at the excited state, leading to highly efficient photoreactivity.  相似文献   

12.
A novel strategy to generate functionalized 1‐azatriene intermediates for 6π electrocyclizations was developed by using readily accessible dienyne‐imides and various terminal olefins under PdII catalysis. Taking advantage of the sequential cooperation between preloaded and incorporated functional handles at 1,3‐dien‐5‐yne skeletons, this method not only enables the selective generation of putative 1‐azatrienes but significantly accelerates their thermal 6π‐electrocyclic ring‐closure processes to a series of highly substituted furo[2,3‐b]dihydropyridine derivatives in good yields.  相似文献   

13.
The synthesis of tropanes via a microwave‐assisted, stereoselective 6π‐electrocyclic ring‐opening/ Huisgen [3+2]‐cycloaddition cascade of cyclopropanated pyrrole and furan derivatives with electron‐deficient dipolarophiles is demonstrated. Starting from furans or pyrroles, 8‐aza‐ and 8‐oxabicyclo[3.2.1]octanes are accessible in two steps in dia‐ and enantioselective pure form, being versatile building blocks for the synthesis of pharmaceutically relevant targets, especially for new cocaine analogues bearing various substituents at the C‐6/C‐7 positions of the tropane ring system. Moreover, the 2‐azabicyclo[2.2.2]octane core (isoquinuclidines), being prominently represented in many natural and pharmaceutical products, is accessible via this approach.  相似文献   

14.
A visible light‐induced photocatalytic dehydrogenation/6π‐cyclization/oxidation cascade converts 1‐(nitromethyl)‐2‐aryl‐1,2,3,4‐tetrahydroisoquinolines into novel 12‐nitro‐substituted tetracyclic indolo[2,1‐a]isoquinoline derivatives. Various photocatalysts promote the reaction in the presence of air and a base, the most efficient being 1‐aminoanthraquinone in combination with K3PO4. Further, the 12‐nitroindoloisoquinoline products can be accessed directly from C1‐unfunctionalized 2‐aryl‐1,2,3,4‐tetrahydroisoquinolines by extending the one‐pot protocol with a foregoing photocatalytic cross‐dehydrogenative coupling reaction, resulting in a quadruple cascade transformation.  相似文献   

15.
Dihydroxybenziphthalocyanine 1 , with bulky aryloxy groups, has been synthesized and characterized by X‐ray crystallography, NMR and UV/Vis‐NIR spectroscopy, and theoretical calculations. Macrocycle 1 is the first example of an aromatic benziphthalocyanine with an 18π‐electron structure, and was found to exist as an equilibrium mixture of weakly aromatic and strongly aromatic tautomers. The aromaticity and near‐IR absorption can be controlled by chemical modification at the reactive resorcinol moiety and by variation of the solvent.  相似文献   

16.
7,8‐Dehydropurpurin has attracted much attention owing to the dual 18π‐ and 20π‐electron circuits in its macrocyclic conjugation. The two‐fold Pd‐catalyzed [3+2] annulation of meso‐bromoporphyrin with 1,4‐diphenylbutadiyne furnished 7,8‐dehydropurpurin dimers. The 8a,8a‐linked dimer displays a red‐shifted and enhanced absorption band in the NIR region and a small electrochemical HOMO–LUMO band gap as a consequence of efficient conjugation between the two coplanar 7,8‐dehydropurpurin units. Treatment of this dimer with N‐bromosuccinimide in chloroform and ethanol gave β‐to‐β vinylene‐bridged porphyrin dimers. Owing to the highly constrained conformations, these dimers exhibit perturbed absorption spectra, small Stokes shifts, and high fluorescence quantum yields.  相似文献   

17.
Three meso‐expanded tetrapyrrolic aromatic macrocycles, including 22π and 26π acetylene–cumulene bridged stretched octamethoxyporphycenes and octamethoxy[22]porphyrin‐(2.2.2.2), are reported, for the first time, by modification of previously reported synthetic methods. This strategy led to an enhancement in the overall yield of their corresponding octaethyl analogues. The methoxy‐substituted expanded porphycenes display slightly blueshifted absorption relative to their ethyl analogues, along with very weak fluorescence, probably due to efficient intramolecular charge transfer (ICT). Additionally, the two‐photon absorption (TPA) cross sections of these macrocycles were evaluated; these are strongly related to core expansion of the porphyrin aromaticity through increased meso‐bridging carbon atoms as well as conformational flexibility and substitution effects at the macrocyclic periphery. In particular, the octamethoxy stretched porphycenes display strong TPA compared with the octaethyl analogues due to the dominant ICT character of methoxy groups with a maximum TPA cross section of 830 GM at 1700 nm observed for 26π‐octamethoxyacetylene–cumuleneporphycene.  相似文献   

18.
The intermolecular interactions in the dimers of m‐nisoldipine polymorphism were studied by B3LYP calculations and quantum theory of "atoms in molecules" (QTAIM) studies. Four geometries of dimers were obtained: dimer I (a‐dimer, O···H? N), dimer II (b‐dimer, O···H? N), dimer III (b‐dimer, π‐stacking‐c), and dimer IV (b‐dimer, π‐stacking‐p). The interaction energies of the four dimers are along the sequence of II>I>III>IV. The intermolecular distance of the interactions follows the order: I (O···H? N)II>III>IV, and the electrostatic character decreases along the sequence: I>II>III>IV.  相似文献   

19.
π‐Conjugated organic materials possess a wide range of tunable optoelectronic properties which are dictated by their molecular structure and supramolecular arrangement. While many efforts have been put into tuning the molecular structure to achieve the desired properties, rational supramolecular control remains a challenge. Here, we report a novel series of supramolecular materials formed by the co‐assembly of weak π‐electron donor (indolo[2,3‐a]carbazole) and acceptor (aromatic o‐quinones) molecules via complementary hydrogen bonding. The resulting polarization creates a drastic perturbation of the molecular energy levels, causing strong charge transfer in the weak donor–acceptor pairs. This leads to a significant lowering (up to 1.5 eV) of the band gaps, intense absorption in the near‐IR region, very short π‐stacking distances (≥3.15 Å), and strong ESR signals in the co‐crystals. By varying the strength of the acceptor, the characteristics of the complexes can be tuned between intrinsic, gate‐, or light‐induced semiconductivity with a p‐type or ambipolar transport mechanism.  相似文献   

20.
Conjugated copolymers based on benzodithiophene (BDT) derivatives and thiophene‐quinoxaline‐thiophene (TQT) segments represent an efficient class of light harvesting materials for organic photovoltaic (OPV) applications. Commonly, BDT‐TQT copolymers are synthesized by Stille cross‐coupling polymerization. In this study, alkoxy and thienyl functionalized alternating BDT‐alt‐TQT copolymers are synthesized by direct arylation polymerization (DArP), using Ozawa conditions. An extensive optimization of the reaction conditions such as the catalytic system, solvent, temperature, base, and the concentration of the catalyst is accomplished. The optical and electrochemical properties of the copolymers obtained by DArP are compared to the reference polymers synthesized by Stille cross‐coupling polymerization. Finally, the optimized BDT‐alt‐TQT copolymers are incorporated into organic solar cells as electron donors. The solar cells of the DArP copolymers exhibit power conversion efficiencies up to 80% (rel.) of their Stille cross coupling analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1457–1467  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号