首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron‐withdrawing and ‐donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1‐octene, and ethylbenzene in various solvent systems, namely, toluene, CH2Cl2, CH3CN, and H2O/CH3CN (1:4). With an increase in the concentration of the easy‐to‐oxidize substrate cyclohexene in the presence of [(TMP)MnCl] ( 1 a ) with electron‐donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn? OOC(O)R] species 2 a is the major active species. When the substrate was changed from the easy‐to‐oxidize one (cyclohexene) to difficult‐to‐oxidize ones (1‐octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F20TPP)Mn? OOC(O)R] species 2 b generated from the reaction of [(F20TPP)MnCl] ( 1 b ) with electron‐withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn? OOR] 2 a ) depending on the concentration of the easy‐to‐oxidize substrate cyclohexene in all aprotic solvent systems except for CH3CN, whereas MnV?O species is the major active oxidant in the protic solvent system. With difficult‐to‐oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1‐octene in toluene, indicating that a MnV?O intermediate generated from the heterolytic cleavage of 2 b becomes a major reactive species. We also studied the competitive epoxidations of cis‐2‐octene and trans‐2‐octene with two manganese(III) porphyrin complexes by meta‐chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis‐ to trans‐2‐octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further supporting the contention that the reactions of manganese porphyrin complexes with peracids generate multiple reactive oxidizing intermediates.  相似文献   

2.
A series of porphyrin‐based imine gels have been synthesized via dynamic covalent gelation between 5,10,15,20‐tetra(4‐aminophenyl)‐21H,23H‐porphyrin (H2TAPP) derivatives and various aldehyde compounds. The porphyrin‐ferrocene imine gels based on MTAPP (M=H2, Ni2+, Co2+, Pd2+ and Zn2+) and ferrocene‐1,1′‐dicarbaldehyde (NA) display efficient HER, OER and ORR activities in alkaline media. Among the gels, CoTAPP‐NA shows an HER current density of 10 mA cm?2 at low overpotential of 470 mV and small Tafel slope of 110 mV decade?1 in alkaline media. CoTAPP‐NA also exhibits OER catalytic activity with low overpotential (416 mV for 10 mA cm?2). CoTAPP‐NA shows ability in overall water splitting in alkaline media. In addition, CoTAPP‐NA exhibits onset potential (Ep) of 0.95 V and half‐wave potential (E1/2) of 0.84 V in 1.0 mol L?1 KOH solution for oxygen reduction. Moreover, the gel catalyst shows good stability.  相似文献   

3.
Indium‐bridged [1]ferrocenophanes ([1]FCPs) and [1.1]ferrocenophanes ([1.1]FCPs) were synthesized from dilithioferrocene species and indium dichlorides. The reaction of Li2fc?tmeda (fc=(H4C5)2Fe) and (Mamx)InCl2 (Mamx=6‐(Me2NCH2)‐2,4‐tBu2C6H2) gave a mixture of the [1]FCP (Mamx)Infc ( 41 ), the [1.1]FCP [(Mamx)Infc]2 ( 42 ), and oligomers [(Mamx)Infc]n ( 4 n ). In a similar reaction, employing the enantiomerically pure, planar‐chiral (Sp,Sp)‐1,1′‐dibromo‐2,2′‐diisopropylferrocene ( 1 ) as a precursor for the dilithioferrocene derivative Li2fciPr2, equipped with two iPr groups in the α position, gave the inda[1]ferrocenophane 51 [(Mamx)InfciPr2] selectively. Species 51 underwent ring‐opening polymerization to give the polymer 5 n . The reaction between Li2fciPr2 and Ar′InCl2 (Ar′=2‐(Me2NCH2)C6H4) gave an inseparable mixture of the [1]FCP Ar′InfciPr2 ( 61 ) and the [1.1]FCP [Ar′InfciPr2]2 ( 62 ). Hydrogenolysis reactions (BP86/TZ2P) of the four inda[1]ferrocenophanes revealed that the structurally most distorted species ( 51 ) is also the most strained [1]FCP.  相似文献   

4.
The NiII complexes [Ni([9]aneNS2‐CH3)2]2+ ([9]aneNS2‐CH3=N‐methyl‐1‐aza‐4,7‐dithiacyclononane), [Ni(bis[9]aneNS2‐C2H4)]2+ (bis[9]aneNS2‐C2H4=1,2‐bis‐(1‐aza‐4,7‐dithiacyclononylethane) and [Ni([9]aneS3)2]2+ ([9]aneS3=1,4,7‐trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal NiIII products, which have been characterized by X‐ray crystallography, UV/Vis and multi‐frequency EPR spectroscopy. The single‐crystal X‐ray structure of [NiIII([9]aneNS2‐CH3)2](ClO4)6?(H5O2)3 reveals an octahedral co‐ordination at the Ni centre, while the crystal structure of [NiIII(bis[9]aneNS2‐C2H4)](ClO4)6?(H3O)3? 3H2O exhibits a more distorted co‐ordination. In the homoleptic analogue, [NiIII([9]aneS3)2](ClO4)3, structurally characterized at 30 K, the Ni? S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn–Teller distorted octahedral stereochemistry. [Ni([9]aneNS2‐CH3)2](PF6)2 shows a one‐electron oxidation process in MeCN (0.2 M NBu4PF6, 293 K) at E1/2=+1.10 V versus Fc+/Fc assigned to a formal NiIII/NiII couple. [Ni(bis[9]aneNS2‐C2H4)](PF6)2 exhibits a one‐electron oxidation process at E1/2=+0.98 V and a reduction process at E1/2=?1.25 V assigned to NiII/NiIII and NiII/NiI couples, respectively. The multi‐frequency X‐, L‐, S‐, K‐band EPR spectra of the 3+ cations and their 86.2 % 61Ni‐enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6 %, 42.8 % and 37.2 % Ni character in [Ni([9]aneNS2‐CH3)2]3+, [Ni(bis[9]aneNS2‐C2H4)]3+ and [Ni([9]aneS3)2]3+, respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S‐thioether centres. EPR spectra for [61Ni([9]aneS3)2]3+ are consistent with a dynamic Jahn–Teller distortion in this compound.  相似文献   

5.
A series of planar and nonplanar free‐base β‐pyrrole substituted meso‐tetraarylporphyrins were characterized by electrochemistry, spectroelectrochemistry, and protonation or deprotonation reactions in neutral, acidic, and basic solutions of CH2Cl2. The neutral compounds are represented as H2(P), in which P represents a porphyrin dianion with one of several different sets of electron‐withdrawing or ‐donating substituents at the messo and/or β‐pyrrole positions of the macrocycle. The conversion of H2(P) to [H4(P)]2+ in CH2Cl2 was accomplished by titration of the neutral porphyrin with trifluoroacetic acid (TFA) while the progress of the protonation was monitored by UV/Vis spectroscopy, which was also used to calculate logβ2 for proton addition to the core nitrogen atoms of the macrocycle. Cyclic voltammetry was performed after each addition of TFA or TBAOH to CH2Cl2 solutions of the porphyrin and half‐wave potentials for reduction were evaluated as a function of the added acid or base concentration. Thin‐layer spectroelectrochemistry was used to obtain UV/Vis spectra of the neutral and protonated or deprotonated porphyrins under the application of an applied reducing potential. The magnitude of the protonation constants, the positions of λmax in the UV/Vis spectra and the half‐wave or peak potentials for reduction are then related to the electronic properties of the porphyrin and the data evaluated as a function of the planarity or nonplanarity of the porphyrin macrocycle. Surprisingly, the electroreduction of the diprotonated nonplanar porphyrins in acid media leads to H2(P), whereas the nonplanar H2(P) derivatives are reduced to [(P)]2? in CH2Cl2 containing 0.1 M tetra‐n‐butylammonium perchlorate (TBAP). Thus, in both cases an electrochemically initiated deprotonation is observed.  相似文献   

6.
Solution equilibria of the ternary systems Ni(II)–picolinic acid (Hpic) and the amino acids aspartic acid (H2asp), glutamic acid (H2glu), cysteine (H2cys) and histidine (Hhis), where the amino acids are denoted as H i L, have been studied pH-metrically. The formation constants of the resulting mixed ligand complexes have been determined at 25 °C using a ionic strength 1.0 mol·dm?3 NaCl. In the Ni(II)–Hpic–H2asp and Ni(II)–Hpic–H2glu systems, the complexes [Ni(pic)H2L]+, Ni(pic)HL, [Ni(pic)L]? and [Ni(pic)L(OH)]2? were detected. In the Ni(II)–Hpic–H2cys system the complexes [Ni(pic)H2L]+ and [Ni(pic)L]? are present. Additionally, in the Ni(II)–Hpic–Hhis system the species [Ni(Hpic)HL]2+, Ni(pic)L and [Ni(pic)L(OH)]? were identified. The species distribution diagrams as functions of pH are briefly discussed.  相似文献   

7.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

8.
The synthesis, characterization and methyl methacrylate polymerization behaviors of 2‐(N‐arylimino)pyrrolide nickel complexes are described. The nickel complex [NN]2Ni ( 1 , [NN] = [2‐C(H)NAr‐5‐tBu‐C4H2N]?, Ar = 2,6‐iPr2C6H3) was prepared in good yield by the reaction of [NN]Li with trans‐[Ni(Cl)(Ph)(PPh3)2] in THF. Reaction of [NN]Li with NiBr2(DME) yielded the nickel bromide [NN]Ni(Br)[NNH] ( 2 ). Complexes 1 and 2 were characterized by 1H NMR and IR spectroscopy and elemental analysis, and by X‐ray single crystal analysis. Both complexes, upon activation with methylaluminoxane, are highly active for the polymerization of methyl methacrylate to give high molecular weight polymethylmethacrylate with narrow molecular distributions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Porphyrin nanorods (PNR) were prepared by ionic self‐assembly of two oppositely charged porphyrin molecules consisting of free base meso‐tetraphenylsulfonate porphyrin (H4TPPS42?) and meso‐tetra(N‐methyl‐4‐pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42?? SnTMePyP4+, H4TPPS42?? CoTMePyP4+, H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR‐modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at ?0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR‐modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42?? SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42?? CoTMePyP4+ H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.  相似文献   

10.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

11.
The superior properties of nanomaterials with a special structure can provide prospects for highly efficient water splitting and lithium storage. Herein, we fabricated a series of peapodlike C@Ni2?xCoxP (x≤1) nanocomposites by an anion‐exchange pathway. The experimental results indicated that the HER activity of C@Ni2?xCoxP catalyst is strongly related to the Co/Ni ratio, and the C@NiCoP got the highest HER activity with low onset potential of ~45 mV, small Tafel slope of ~43 mV dec?1, large exchange current density of 0.21 mA cm?2, and high long‐term durability (60 h) in 0.5 m H2SO4 solutions. Equally importantly, as an anode electrode for lithium batteries, this peapodlike C@NiCoP nanocomposite gives excellent charge–discharge properties (e.g., specific capacity of 670 mAh g?1 at 0.2 A g?1 after 350 cycles, and a reversible capacity of 405 mAh g?1 at a high current rate of 10 A g?1). The outstanding performance of C@NiCoP in HER and LIBs could be attributed to the synergistic effect of the rational design of peapodlike nanostructures and the introduction of Co element.  相似文献   

12.
13.
We report on the structures of three unprecedented heteroleptic Sb‐centered radicals [L(Cl)Ga](R)Sb. ( 2‐R , R=B[N(Dip)CH]2 2‐B , 2,6‐Mes2C6H3 2‐C , N(SiMe3)Dip 2‐N ) stabilized by one electropositive metal fragment [L(Cl)Ga] (L=HC[C(Me)N(Dip)]2, Dip=2,6‐i‐Pr2C6H3) and one bulky B‐ ( 2‐B ), C‐ ( 2‐C ), or N‐based ( 2‐N ) substituent. Compounds 2‐R are predominantly metal‐centered radicals. Their electronic properties are largely influenced by the electronic nature of the ligands R, and significant delocalization of unpaired‐spin density onto the ligands was observed in 2‐B and 2‐N . Cyclic voltammetry (CV) studies showed that 2‐B undergoes a quasi‐reversible one‐electron reduction, which was confirmed by the synthesis of [K([2.2.2]crypt)][L(Cl)GaSbB[N(Dip)CH]2] ([K([2.2.2]crypt)][ 2‐B ]) containing the stibanyl anion [ 2‐B ]?, which was shown to possess significant Sb?B multiple‐bonding character.  相似文献   

14.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

15.
16.
A MHC6 complex of a platinum group metal with a capped octahedral arrangement of donor atoms around the metal center has been characterized. This osmium compound OsH{κ2C,C‐(PhBIm‐C6H4)}3, which reacts with HBF4 to afford the 14 e? species [Os{κ2C,C‐(PhBIm‐C6H4)}(Ph2BIm)2]BF4 stabilized by two agostic interactions, has been obtained by reaction of OsH6(PiPr3)2 with N,N′‐diphenylbenzimidazolium chloride ([Ph2BImH]Cl) in the presence of NEt3. Its formation takes place through the C,C,C‐pincer compound OsH23C,C,C‐(C6H4‐BIm‐C6H4)}(PiPr3)2, the dihydrogen derivative OsCl{κ2C,C‐(PhBIm‐C6H4)}(η2‐H2)(PiPr3)2, and the five‐coordinate osmium(II) species OsCl{κ2C,C‐(PhBIm‐C6H4)}(PiPr3)2.  相似文献   

17.
The first hydride-containing 2-electron palladium/copper alloys, [PdHCu11{S2P(OiPr)2}6(C≡CPh)4] ( PdHCu11 ) and [PdHCu12{S2P(OiPr)2}5{S2PO(OiPr)} (C≡CPh)4] ( PdHCu12 ), are synthesized from the reaction of [PdH2Cu14{S2P(OiPr)2}6(C≡CPh)6] ( PdH2Cu14 ) with trifluoroacetic acid (TFA). X-ray diffraction reveals that the PdHCu11 and PdHCu12 kernels consist of a central PdH unit encapsulated within a vertex-missing Cu11 cuboctahedron and complete Cu12 cuboctahedron, respectively. DFT calculations indicate that both PdHCu11 and PdHCu12 can be considered as axially-distorted 2-electron superatoms. PdHCu11 shows excellent HER activity, unprecedented within metal nanoclusters, with an onset potential of −0.05 V (at 10 mA cm−2), a Tafel slope of 40 mV dec−1, and consistent HER activity during 1000 cycles in 0.5 M H2SO4. Our study suggests that the accessible central Pd site is the key to HER activity and may provide guidelines for correlating catalyst structures and HER activity.  相似文献   

18.
We describe the results of a study on the stabilities of pincer‐type nickel complexes relevant to catalytic hydroalkoxylation and hydroamination of olefins, C? C and C? X couplings, and fluorination of alkyl halides. Complexes [(POCsp3OP)NiX] are stable for X=OSiMe3, OMes (Mes=1,3,5‐Me3C6H2), NPh2, and CC? H, whereas the O(tBu) and N(SiMe3)2 derivatives decompose readily. The phenylacetylide derivative transforms gradually into the zero‐valent species cis‐[{κPCC′‐(iPr2POCH2CHCH2)}Ni{η2CC′‐(iPr2P(O)CCPh)}]. Likewise, attempts to prepare [(POCsp3OP)NiF] gave instead the zwitterionic trinuclear species [{(η3‐allyl)Ni}2‐{μ,κPO‐(iPr2PO)4Ni}]. Characterization of these two complexes provides concrete examples of decomposition processes that can dismantle POCsp3OP‐type pincer ligands by facile C? O bond rupture. These results serve as a cautionary tale for the inherent structural fragility of pincer systems bearing phosphinite donor moieties, and provide guidelines on how to design more robust analogues.  相似文献   

19.
20.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号