首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm?2) and by approximately a factor of 10 at low power densities (1 W cm?2).  相似文献   

2.
Novel β‐NaGdF4/Na(Gd,Yb)F4:Er/NaYF4:Yb/NaNdF4:Yb core/shell 1/shell 2/shell 3 (C/S1/S2/S3) multi‐shell nanocrystals (NCs) have been synthesized and used as probes for in vivo imaging. They can be excited by near‐infrared (800 nm) radiation and emit short‐wavelength infrared (SWIR, 1525 nm) radiation. Excitation at 800 nm falls into the “biological transparency window”, which features low absorption by water and low heat generation and is considered to be the ideal excitation wavelength with the least impact on biological tissues. After coating with phospholipids, the water‐soluble NCs showed good biocompatibility and low toxicity. With efficient SWIR emission at 1525 nm, the probe is detectable in tissues at depths of up to 18 mm with a low detection threshold concentration (5 nM for the stomach of nude mice and 100 nM for the stomach of SD rats). These results highlight the potential of the probe for the in vivo monitoring of areas that are otherwise difficult to analyze.  相似文献   

3.
High‐quality rare‐earth fluorides, α‐NaMF4 (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and β‐NaMF4 (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130–230 °C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic α‐NaMF4 to hexagonal phase β‐NaMF4. Upon adjustment of the amount of NaOH, NaF, M3+, and ethanol, the morphologies for the β‐NaMF4 nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower‐patterned disk. Simultaneously, the size of the rare‐earth fluoride crystals is variable from 5 nm to several micrometers. A combination of “diffusion‐controlled growth” and the “organic–inorganic interface effect” is proposed to understand the formation of the nanocrystals. An ideal “1D growth” of rare‐earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube‐ and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike β‐NaMF4 nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by “1D/2D ripening”. Multicolor up‐conversion fluorescence is also successfully realized in the Yb3+/Er3+ (green, red) and Yb3+/Tm3+ (blue) co‐doped α‐NaYF4 nanocrystals and β‐NaYF4 nanoarrays by excitation in the NIR region (980 nm).  相似文献   

4.
Upconversion emissions from rare‐earth nanoparticles have attracted much interest as potential biolabels, for which small particle size and high emission intensity are both desired. Herein we report a facile way to achieve NaYF4:Yb,Er@CaF2 nanoparticles (NPs) with a small size (10–13 nm) and highly enhanced (ca. 300 times) upconversion emission compared with the pristine NPs. The CaF2 shell protects the rare‐earth ions from leaking, when the nanoparticles are exposed to buffer solution, and ensures biological safety for the potential bioprobe applications. With the upconversion emission from NaYF4:Yb,Er@CaF2 NPs, HeLa cells were imaged with low background interference.  相似文献   

5.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

6.
We report the controlled synthesis of exchange‐coupled face‐centered tetragonal (fct) FePd/α‐Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high‐temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct‐FePd phase was formed by the interdiffusion between reduced α‐Fe and face‐centered cubic (fcc) Pd, whereas the excessive α‐Fe remained around the fct‐FePd grains, realizing exchange coupling between the soft magnetic α‐Fe and hard magnetic fct‐FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange‐coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g?1. This work provides a bottom‐up approach using exchange‐coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.  相似文献   

7.
Microspherical bismuth oxychloride (BiOCl) can only utilize ultraviolet (UV) light to promote photocatalytic reactions. To overcome this limitation, a uniform and thin BiOCl nanosheet was synthesized with a particle size of about 200 nm. As results of UV–visible diffuse reflectance spectroscopy showed, the band gap of this nanostructure was reduced to 2.78 eV, indicating that the BiOCl nanosheet could absorb and utilize visible light. Furthermore, the upconversion material NaYF4 doped with rare earth ions Yb3+ and Er3+ emitted visible light at 410 nm following excitation with near‐infrared (NIR) light (980 nm), which could be utilized by BiOCl to produce a photocatalytic reaction. To produce a high‐efficiency photocatalyst (NaYF4:Yb3+,Er3+@BiOCl), BiOCl‐loaded NaYF4:Yb3+,Er3+ was successfully synthesized via a simple two‐step hydrothermal method. The as‐synthesized material was confirmed using X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy as well as other characterizations. The removal ratio of methylene blue by NaYF4:Yb3+,Er3+@BiOCl was much higher than that of BiOCl alone. Recycling experiments verified the stability of NaYF4:Yb3+,Er3+@BiOCl, which demonstrated excellent adsorption, strong visible‐light absorption and high electron–hole separation efficiency. Such properties are expected to be useful in practical applications, and a further understanding of the NIR‐light‐responsive photocatalytic mechanism of this new catalytic material would be conducive to improving its structural design and function.  相似文献   

8.
We report an epitaxial growth technique for scalable production of hybrid sodium rare‐earth fluoride (NaLnF4) microcrystals, including NaYF4, NaYbF4, and NaLuF4 material systems. The single crystalline nature of the as‐synthesized products makes them strong upconversion emission. The freedom of combining a lanthanide activator (Er3+ or Tm3+) with a sensitizer (Yb3+) at various doping concentrations readily gives access to color multiplexing at the single‐particle level. Our kinetic and thermodynamic investigations on the epitaxial growth of core–shell microcrystals using NaLnF4 particle seeds suggest that within a certain size regime it is plausible to exert precise control over shell thickness and growth orientation under hydrothermal conditions.  相似文献   

9.
By taking advantage of UV‐Raman spectroscopy and high‐resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α‐Ga2O3 and then into β‐Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α‐Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α‐Ga2O3 into β‐Ga2O3, the nucleation of β‐Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β‐Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α‐Ga2O3 single particles can be easily tuned and a particle with an α@β core–shell phase structure has been obtained.  相似文献   

10.
A crystal design strategy is described that generates hexagonal‐phased NaYF4:Nd/Yb@NaYF4:Yb/Tm luminescent nanocrystals with the ability to emit light at 803 nm when illuminated at 745 nm. This is accomplished by taking advantage of the large absorption cross‐section of Nd3+ between 720 and 760 nm plus efficient spatial energy transfer and migration through Nd3+→Yb3+→Yb3+→Tm3+. Mechanistic investigations suggest that a cascaded two‐photon energy transfer upconversion process underlies the emission mechanism. This protocol enables deep‐tissue imaging to be achieved while mitigating the attenuation effect associated with the visible emission and the overheating constraint imposed by conventional 980 nm excitation.  相似文献   

11.
An intense single‐band blue emission at λ=450 nm is observed from Tm3+ ions through Ce3+ sensitization, for the first time, in colloidal Ce3+/Tm3+‐doped NaYF4 nanocrystals. The intense Tm3+ emission through broad‐band excitation is advantageous for developing luminescent nanocomposites because they can be easily incorporated into polymers. The composites can easily be coated over UV light‐emitting diodes (LEDs) to develop phosphor‐based blue LEDs.  相似文献   

12.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

13.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

14.
On the Identity of a so‐called Ammonium Carbonate Sample Commercial samples of so‐called “ammionum carbonate” are shown to contain ammonium carbamate rather than ammonium carbonate. In fact samples may contain varying quantities of α‐ and β‐(NH4)(CO2NH2), of which only the α‐phase is reported in the literature. Mixtures of both phases tend to leak the volatile α‐phase and to react with moisture to form (NH4)(HCO3). The crystal structure of the new β‐(NH4)(CO2NH2) is refined from X‐ray powder data.  相似文献   

15.
Control over phase stabilities during synthesis processes is of great importance for both fundamental studies and practical applications. We describe herein a facile strategy for the synthesis of Cu2Se with phase selectivity through a simple solvothermal method. In the presence and absence of SbCl3, monoclinic α‐Cu2Se and cubic β‐Cu2Se can be synthesized, respectively. The formation of α‐Cu2Se requires optimization of the Cu/Se molar ratio in the starting reagents, the reaction temperature, as well as the timing for the addition of SbCl3. Differential scanning calorimetry of the synthesized α‐Cu2Se has shown that a part of it undergoes a phase transition to β‐Cu2Se at 135 °C, and that this phase transition is irreversible on cooling to ambient temperature. Kinetic studies have revealed that in the presence of Sb species the kinetically favored β‐Cu2Se transforms to the thermodynamically favored α‐Cu2Se. In this β‐to‐α phase transition process, the distribution of Cu ions in β‐Cu2Se, as determined by the Cu/Se ratio and temperature, is likely to play a crucial role.  相似文献   

16.
Summary: The synthesis of core‐shell particles with a poly(ε‐caprolactone) (PCL) shell and magnetite (Fe3O4) contents of between 10 wt.‐% and 41 wt.‐% proceeds by surface‐initiated ring‐opening polymerization of ε‐caprolactone to give surface‐immobilized oligomers with between 1 400 g · mol−1 and 11 500 g · mol−1. The particles are dispersable in good solvents for the PCL shell. Magnetization experiments on the resulting superparamagnetic ferrofluids give a core‐size distribution with an average diameter, dv, of about 9.7 nm.

TEM image of Fe3O4/PCL core‐shell particles cast from CHCl3 dispersion.  相似文献   


17.
陈钰雪  燕照霞  姜磊 《化学通报》2021,84(9):919-925
以NaYF_4材料为基质的上转换纳米颗粒(UCNPs)是最早报道的、应用范围最广的上转换材料之一。掺杂了稀土离子的颗粒不但可以在不同激发条件下发射出不同波长和强度的荧光,而且可以与多种光敏分子搭配使用,通过荧光共振能量转移产生单线态氧,实现生物医学成像或诊疗方面的应用。但是其形貌和荧光性能均受制备方法和工艺条件的影响较大。本文通过水热法合成了两类掺杂不同稀土离子的十种NaYF_4 UCNPs,在保持掺杂离子的终浓度不变的条件下,探究离子类型与比例对纳米材料的结构和上转换发光性能的影响。在此基础上,探索了多种卟啉类光敏剂分子与NaYF_4 UCNPs发生能量转换及单线态氧的产生能力。本工作可为基于NaYF_4材料的上转换颗粒的规模化制备和工艺升级提供数据支撑和理论参考。  相似文献   

18.
Oleic acid stabilized superparamagnetic iron oxide nanoparticles (SPION) were selected as the cores for fabrication of sub‐50‐nm monodisperse single‐loaded SPION@SiO2 core–shell nanostructures. Parameters that influence the formation of SPION@SiO2 in the water‐in‐oil reverse microemulsion system have been systematically investigated. The sufficiently high concentration of well‐dispersed SPION, together with an appropriately low injection rate of tetraethoxysilane, were found to be the keys to efficiently prevent the homogeneous nucleation of silica and obtain a high‐quality single‐loaded core–shell nanocomposite. A more detailed mechanism for incorporating oleic acid capped inorganic functional nanoparticles into silica is proposed on the basis of previous reports and our new experimental results. Finally, the as‐synthesized SPION@SiO2 nanospheres are exploited as an MRI‐enhanced contrast agent, and their contrast effect in solution is tested by using a clinical MRI instrument.  相似文献   

19.
Upconverting nanoparticles (UCNPs) with fascinating properties hold great potential as nanotransducers for solving the problems that traditional photodynamic therapy (PDT) has been facing. In this report, by using well‐selected bifunctional gadolinium (Gd)‐ion‐doped UCNPs and water‐soluble methylene blue (MB) combined with the water‐in‐oil reverse microemulsion technique, we have succeeded in developing a new kind of UCNP/MB‐based PDT drug, NaYF4:Er/Yb/Gd@SiO2(MB), with a particle diameter less than 50 nm. Great efforts have been made to investigate the drug‐formation mechanism and provide detailed physical and photochemical characterizations and the potential structure optimization of the as‐designed PDT drug. We envision that such a PDT drug will become a potential theranostic nanomedicine for future near‐infrared laser‐triggered photodynamic therapy and simultaneous magnetic/optical bimodal imaging.  相似文献   

20.
Herein, we reported the formation mechanism of hybrid crystalline (cylindrite) in isotactic polypropylene (iPP)/carbon fiber (CF) via pulling a CF within the iPP melt. The α‐row nuclei layer closely attached to the surface of CF acts as a self‐nucleation site, rather than a heterogeneous nucleation one, to grow cylindrites. As a result, the polymorphic feature of iPP/CF cylindrite is significantly influenced by the microstructure of α‐row nuclei. With decreasing crystallization temperature (Tc), the polymorphic cylindrite changes from pure α‐form to mixed α‐/β‐form and to β‐rich form. The main characteristics of this change include: (a) the outlines of α‐row nuclei layer correspond to wave‐like, saw‐like, and straight lines; (b) the orientation level of iPP molecules in the α‐row nuclei layer become higher; (c) the α‐lamellae rearrange from loose to compact; and (d) the distance between the growth sites of β‐sectors and the surface of CF is evidently longer than in the case of α‐sectors. Moreover, this study provides a guideline for developing the interfacial enhanced iPP/CF composites through manipulation of polymorphic structure in cylindrites. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 368–377  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号