首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report herein the first enantioselective cycloaddition of vinyl oxetanes, the reaction of which with azadienes provided unprecedented access to ten‐membered heterocycles through a [6+4] cycloaddition. By using a commercially available chiral Pd‐SIPHOX catalyst, a wide range of benzofuran‐ as well as indole‐fused heterocycles could be accessed in excellent yield and enantioselectivity. A unique Lewis acid induced fragmentation of these ten‐membered heterocycles was also discovered.  相似文献   

2.
A new asymmetric synthesis of chiral 1,4‐dioxanes and other oxa‐heterocycles has been developed by means of organocatalytic enantioselective desymmetrization of oxetanes. This mild process proceeds with exceedingly high efficiency and enantioselectivity to establish the quaternary stereocenters. This method complements the existing, yet limited, strategies for the synthesis of these oxa‐heterocycles.  相似文献   

3.
α-Selenoalkyllithiums already used for the regioselective synthesis of epoxides1 are found valuable building blocks for the synthesis of higher homologues namely oxetanes and tetrahydrofuranes. The general synthetic strategy used is schematized below and represent a formal homologization reaction of epoxides and oxetanes by carbene insertion.  相似文献   

4.
The selective isomerization of strained heterocyclic compounds is an important tool in organic synthesis. An unprecedented regioselective isomerization of 2,2‐disubstituted oxetanes into homoallylic alcohols is described. The use of tris(pentafluorophenyl)borane (B(C6F5)3), a commercially available Lewis acid was key to obtaining good yields and selectivities since other Lewis acids afforded mixtures of isomers and substantial polymerization. The reaction took place under exceptionally mild reaction conditions and very low catalyst loading (0.5 mol %). DFT calculations disclose the mechanistic features of the isomerization and account for the high selectivity displayed by the B(C6F5)3 catalyst. The synthetic applicability of the new reaction is demonstrated by the preparation of γ‐chiral alcohols using iridium‐catalyzed asymmetric hydrogenation.  相似文献   

5.
Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2‐dicarboxylates were accessed in high yields, including functionalized 3‐/4‐aryl‐ and alkyl‐substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.  相似文献   

6.
Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2‐dicarboxylates were accessed in high yields, including functionalized 3‐/4‐aryl‐ and alkyl‐substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.  相似文献   

7.
A chiral Brønsted base catalyzed asymmetric annulation of ortho‐alkynylanilines has been developed to access axially chiral naphthyl‐C2‐indoles via vinylidene ortho‐quinone methide (VQM) intermediates. This strategy provides a unique organocatalytic atroposelective route to axially chiral aryl‐C2‐indole skeletons with excellent enantioselectivity and functional‐group tolerance. This transformation was applicable to decagram‐scale preparation (50.0 g) with perfect enantioselectivity through simple recrystallization. Moreover, the utility of this reaction was demonstrated by a variety of transformations towards chiral naphthyl‐C2‐indoles for a series of carbon–heteroatom bond formations. Furthermore, the prepared axially chiral naphthyl‐C2‐indoles were applied as a chiral skeleton for organocatalytic aza‐Baylis–Hillman reaction and asymmetric formal [4+2] tandem cyclization to give the corresponding adducts in high yields with improved enantioselectivity and diastereoselectivity.  相似文献   

8.
A novel enantioselective organocatalytic strategy is presented for the synthesis of tetrahydrofurobenzofuran and methanobenzodioxepine natural product core structures. The strategy is based on a pair of divergent reaction pathways in which hydroxyarenes react with γ‐keto‐α,β‐unsaturated aldehydes, catalyzed by a chiral secondary amine. One reaction pathway, which leads to chiral 5,5‐fused acetals with two stereocenters—the tetrahydrofurobenzofuran scaffolds—proceeds in moderate yields and up to 96 % ee. The other reaction pathway provides 5,6‐bridged methanobenzodioxepine scaffolds with three stereocenters in moderate to good yields and up to 95 % ee. The reaction is remarkable as it can proceed with catalyst loadings as low as 0.25 mol %, providing one of the highest known turnover numbers in iminium ion catalysis. Furthermore, the hemiacetal tetrahydrofurobenzofuran can undergo functionalizations including reduction, oxidation, and allylation. Finally, the effects involved in the substrate control for the divergent pathways, based on both experimental and computational studies, have been investigated. A model involving steric, electronic and stereoelectronic interactions is discussed to rationalize the observed selectivities.  相似文献   

9.
An enantioselective synthesis of β‐chiral amides through asymmetric and redox‐neutral hydroamidation of enals is reported. In this reaction, a chiral N‐heterocyclic carbene (NHC) catalyst reacts with enals to generate the homoenolate intermediate. Upon highly enantioselective β‐protonation through proton‐shuttle catalysis, the resulting azolium intermediate reacts with imidazole to yield the key β‐chiral acyl species. This transient intermediate provides access to diversified β‐chiral carbonyl derivatives, such as amides, hydrazides, acids, esters, and thioesters. In particular, β‐chiral amides can be prepared in excellent yield and ee (40 chiral amides, up to 95 % yield and 99 % ee). This modular strategy overcomes the challenge of disruption of the highly selective proton‐shuttling process by basic amines.  相似文献   

10.
《Tetrahedron letters》1987,28(40):4741-4744
Ring contraction reactions of triflates of α-hydroxy-γ-lactones provide an approach to the synthesis of chiral polyfunctionalised oxetanes from sugars. Treatment of 1,2-0-isopropylidene-5-0-trifluoromethanesulphonyl-α-D-glucuronolactone with benzylamine or with potassium carbonate in methanol gave ring contraction reactions to form oxetanes in good yield.  相似文献   

11.
The first catalytic asymmetric construction of 3,3′‐bisindole skeletons bearing both axial and central chirality has been established by organocatalytic asymmetric addition reactions of 2‐substituted 3,3′‐bisindoles with 3‐indolylmethanols (up to 98 % yield, all >95:5 d.r., >99 % ee). This reaction also represents the first highly enantioselective construction of axially chiral 3,3′‐bisindole skeletons, and utilizes the strategy of introducing a bulky group to the ortho‐position of prochiral 3,3′‐bisindoles. This reaction not only provides a good example for simultaneously controlling axial and central chirality in one operation, but also serves as a new strategy for catalytic enantioselective construction of axially chiral 3,3′‐bisindole backbones from prochiral substrates.  相似文献   

12.
A new class of axially chiral aryl‐alkene‐indole frameworks have been designed, and the first catalytic asymmetric construction of such scaffolds has been established by the strategy of organocatalytic (Z/E)‐selective and enantioselective (4+3) cyclization of 3‐alkynyl‐2‐indolylmethanols with 2‐naphthols or phenols (all >95 : 5 E/Z, up to 98% yield, 97% ee). This reaction also represents the first catalytic asymmetric construction of axially chiral alkene‐heteroaryl scaffolds, which will add a new member to the atropisomeric family. This approach has not only confronted the great challenges in constructing axially chiral alkene‐heteroaryl scaffolds but also provided a powerful strategy for the enantioselective construction of axially chiral aryl‐alkene‐indole frameworks.  相似文献   

13.
Strain relief of oxetanes offers a plethora of opportunities for the synthesis of chiral alcohols and ethers. In this context, enantioselective desymmetrization has been identified as a powerful tool to construct molecular complexity and this has led to the development of elegant strategies on the basis of transition metal, Lewis acid, and Brønsted acid catalysis. This review highlights recent examples that harness the inherent reactivity of prochiral oxetanes and offers an outlook on the immense possibilities for synthetic application.  相似文献   

14.
A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α‐fluoromethyl‐substituted tertiary alcohols using a three‐component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom‐economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields.  相似文献   

15.
An efficient copper‐catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni’s reagent has been developed. This strategy, accompanied by a double‐bond migration, leads to various branched CF3‐substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β‐H elimination is prohibited, CF3‐containing oxetanes are isolated as the sole product.  相似文献   

16.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

17.
The reaction of the chiral dipeptide glycyl‐L(S)‐glutamate with CoII ions produces chiral ladders that can be used as rigid 1D building units. Spatial separation of these building units with linkers of different lengths allows the engineering of homochiral porous MOFs with enhanced pore sizes, pore volumes, and surface areas. This strategy enables the synthesis of a family of isoreticular MOFs, in which the pore size dictates the enantioselective adsorption of chiral molecules (in terms of their size and enantiomeric excess).  相似文献   

18.
This paper reports new addition reactions of oxetanes with certain protonic reagents such as carboxylic acid, phenol, and thiol, and with certain aprotic reagents such as acyl chloride, thioester, phosphonyl dichloride, silyl chloride, and chloroformate using quaternary onium salts as catalysts. The kinetic study of the addition reactions of oxetanes was also investigated. These new addition reactions were applicable to the synthesis of new polymers. These polyaddition systems could also construct both polymer main chains and reactive side chains. The alternating copolymerization of oxetanes with carboxylic anhydride was performed. Furthermore, it was found that anionic ring‐opening polymerization of oxetanes containing hydroxy groups proceeded to afford the hyperbranched polymer (HBP) with an oxetanyl group and many hydroxy groups at the ends of the polymer chains. Alkali developable photofunctional HBPs were synthesized by the polyaddition of bis(oxetane)s or tris(oxetane)s, and their patterning properties were examined, too. The photo‐induced cationic polymerization of the polymers with pendant oxetanyl groups and the thermal curing reactions of polyfunctional oxetanes (oxetane resins) were also examined to give the crosslinking materials quantitatively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 709–726, 2007  相似文献   

19.
Recently, the demand for synthetic oxetanes has increased because the highly strained structure allows specific biologic functions in vivo and also serves unique purposes in industrial materials. This review article summarizes recent progress in regio‐, site‐, and stereo‐selective formation of oxetanes via a photochemical process.  相似文献   

20.
A molecularly defined chiral boxmi iron alkyl complex catalyzes the hydroboration of various functionalized ketones and provides the corresponding chiral halohydrines, oxaheterocycles (oxiranes, oxetanes, tetrahydrofurans, and dioxanes) and amino alcohols with excellent enantioselectivities (up to >99 %ee) and conversion efficiencies at low catalyst loadings (as low as 0.5 mol %). Turnover frequencies of greater than 40000 h?1 at ?30 °C highlight the activity of this earth‐abundant metal catalyst which tolerates a large number of functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号