首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Herein we report on the synthesis and acid‐responsive emission properties of donor–acceptor (D–A) molecules that contain a thienothiophene unit. 2‐Arylthieno[3,2‐b]thiophenes were conjugated with an N‐methylbenzimidazole unit to form acid‐responsive D–A‐type fluorophores. The D–A‐conjugated fluorophores showed intense intramolecular charge‐transfer (ICT) emission in response to acid. The effect of the substitution on their photophysical properties as well as their solvent‐dependence indicated non‐twisting ICT emission in protonated D–A molecules. The quinoidal character of 2‐arylthienothiophene as a donor part is discussed, as it is assumed that it contributes to suppression of the molecular twisting in the excited state, therefore decreasing the nonradiative rate constant, thereby resulting in the intense ICT emission. Acid–base‐sensitive triple‐color emission was also achieved by the introduction of a base‐responsive phenol group in the donor part.  相似文献   

2.
A new family of 120° carbazole‐based dendritic donors D1 – D3 have been successfully designed and synthesized, from which a series of novel supramolecular carbazole‐based metallodendrimers with well‐defined shapes and sizes were successfully prepared by [2+2] and [3+3] coordination‐driven self‐assembly. The structures of newly designed rhomboidal and hexagonal metallodendrimers were characterized by multinuclear NMR (1H and 31P) spectroscopy, ESI‐TOF mass spectrometry, FTIR spectroscopy, and the PM6 semiempirical molecular orbital method. The fluorescence emission behavior of ligands D1 – D3 , rhomboidal metallodendrimers R1 – R3 , and hexagonal metallodendrimers H1 – H3 in mixtures of dichloromethane and n‐hexane with different n‐hexane fractions were investigated. The results indicated that D1 – D3 featured typical aggregation‐induced emission (AIE) properties. However, different from ligands D1 – D3 , metallodendrimers R1 – R3 and H1 – H3 presented interesting generation‐dependent AIE properties. Furthermore, evidence for the aggregation of these metallodendrimers was confirmed by a detailed investigation of dynamic light‐scattering, Tyndall effect, and SEM. This research not only provides a highly efficient strategy for constructing carbazole‐based dendrimers with well‐defined shapes and sizes, but also presents a new family of carbazole‐based dendritic ligands and rhomboidal and hexagonal metallodendrimers with interesting AIE properties.  相似文献   

3.
The design, synthesis and aggregation‐induced emission properties of a new series of triarylborane–oligothiophene–dicyanovinyl (DCV) conjugates 4 – 6 (A–D–A’ type molecular configuration) are reported. The optical properties of 4 – 6 can be modulated by judiciously varying the number of thiophene units between electron deficient boryl and dicyanovinyl units. Compound 6 with terthiophene spacer showed highly red‐shifted absorption and emission compared to 5 and 4 with bithiophene and monothiophene spacers, respectively. Compounds 5 and 6 show aggregation‐induced emission enhancement in water/THF mixtures. Compounds 5 and 6 also showed solvent viscosity dependent emission characteristics. All the three compounds show distinct optical responses for small anions such as fluoride and cyanide. Filter paper strips coated with compounds 5 and 6 can detect F? and CN? in aqueous media with different colorimetric responses.  相似文献   

4.
A novel white‐light‐emitting organic molecule, which consists of carbazolyl‐ and phenothiazinyl‐substituted benzophenone (OPC) and exhibits aggregation‐induced emission‐delayed fluorescence (AIE‐DF) and mechanofluorochromic properties was synthesized. The CIE color coordinates of OPC were directly measured with a non‐doped powder, which presented white‐emission coordinates (0.33, 0.33) at 244 K to 252 K and (0.35, 0.35) at 298 K. The asymmetric donor–acceptor–donor′ (D‐A‐D′) type of OPC exhibits an accurate inherited relationship from dicarbazolyl‐substituted benzophenone (O2C, D‐A‐D) and diphenothiazinyl‐substituted benzophenone (O2P, D′‐A‐D′). By purposefully selecting the two parent molecules, that is, O2C (blue) and O2P (yellow), the white‐light emission of OPC can be achieved in a single molecule. This finding provides a feasible molecular strategy to design new AIE‐DF white‐light‐emitting organic molecules.  相似文献   

5.
Studies are reported on a series of triphenylamine–(C?C)n–2,5‐diphenyl‐1,3,4‐oxadiazole dyad molecules (n=1–4, 1 , 2 , 3 and 4 , respectively) and the related triphenylamine‐C6H4–(C?C)3–oxadiazole dyad 5 . The oligoyne‐linked D–π–A (D=electron donor, A=electron acceptor) dyad systems have been synthesised by palladium‐catalysed cross‐coupling of terminal alkynyl and butadiynyl synthons with the corresponding bromoalkynyl moieties. Cyclic voltammetric studies reveal a reduction in the HOMO–LUMO gap in the series of compounds 1 – 4 as the oligoyne chain length increases, which is consistent with extended conjugation through the elongated bridges. Photophysical studies provide new insights into conjugative effects in oligoyne molecular wires. In non‐polar solvents the emission from these dyad systems has two different origins: a locally excited (LE) state, which is responsible for a π*→π fluorescence, and an intramolecular charge transfer (ICT) state, which produces charge‐transfer emission. In polar solvents the LE state emission vanishes and only ICT emission is observed. This emission displays strong solvatochromism and analysis according to the Lippert–Mataga–Oshika formalism shows significant ICT for all the luminescent compounds with high efficiency even for the longer more conjugated systems. The excited‐state properties of the dyads in non‐polar solvents vary with the extent of conjugation. For more conjugated systems a fast non‐radiative route dominates the excited‐state decay and follows the Engelman–Jortner energy gap law. The data suggest that the non‐radiative decay is driven by the weak coupling limit.  相似文献   

6.
Condensation copolymerization reactions of carbazole 3,6‐diboronate with 4,7‐bis(5‐bromo‐2‐thienyl)‐2,1,3‐benzothiadiazole (DTBT) only produce low‐molecular‐weight donor (D)‐π‐acceptor (A) copolymers. High‐molecular‐weight copolymers for use in optoelectronic devices are necessary for achieving extended π‐conjugation and for controlling the copolymer processibility. To elucidate the cause of the persistently low molecular weight, we synthesized three 3,6‐carbazole‐based D‐A copolymers using copolymerizations of N‐9′‐heptadecanyl‐3,6‐carbazole with DTBT, N‐9′{2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethyl}‐3,‐6‐carbazole with DTBT, and N‐9′‐heptadecanyl‐3,6‐carbazole with alkyl‐substituted DTBT. We investigated several parameters for their influence on molecular copolymer weight, including the conformation of the chain during growth, the solubility of the monomers, and the dihedral angles between the donor and acceptor units. Size exclusion chromatography, UV–vis absorption spectroscopy, and computational studies revealed that the low molecular weights of 3,6‐carbazole‐based D‐A copolymers resulted from conjugation breaks and the resulting high coplanarity, which led to strong interactions between polymer chains. These interactions limited formation of high‐molecular‐weight‐copolymers during copolymerization. The strong intermolecular interactions of the 3,6‐carbazole moiety were exploited by incorporating 3,6‐carbazole units into poly[9′,9′‐dioctyl‐2,7‐flourene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] prepared from 9′,9′‐dioctyl‐2,7‐flourene and DTBT. Interestingly, the number average molecular weight increased gradually with increasing 2,7‐fluorene monomer content but the number of conjugation breaks was a range of 6–7. The hole mobilities of the copolymers were studied for comparison purposes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
8.
The development of disilane‐bridged donor–acceptor–donor (D‐Si‐Si‐A‐Si‐Si‐D) and acceptor–donor–acceptor (A‐Si‐Si‐D‐Si‐Si‐A) compounds is described. Both types of compound showed strong emission (λem=ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation‐induced emission enhancement in solution. X‐ray diffraction revealed that the crystal structures of 2 , 4 , and 12 had no intermolecular π–π interactions to suppress the nonradiative transition in the solid state.  相似文献   

9.
Jinfeng Zhang  Jincai Wu 《中国化学》2011,29(9):1951-1954
A series of novel polylactide (PLA) polymers were synthesized initiated by 4‐dicyanomethylene‐2‐methyl‐6‐{4‐[(2‐hydroxyethyl)(methyl)amino]styryl}‐4H‐pyran (DCM) with Sn(Oct)2 as catalyst. The color and emission of the polymer can be tuned just with polymer molecular weight.  相似文献   

10.
A series of solution‐processable small molecules PO1 – PO4 were designed and synthesized by linking N‐phenylnaphthalen‐1‐amine groups to a phenyl phosphine oxide core through a π‐conjugated bridge, and their thermal, photophysical, and electrochemical properties were investigated. The phosphine oxide linkage can disrupt the conjugation and allows the molecular system to be extended to enable solution processability and high glass transition temperatures (159–181 °C) while preserving the deep‐blue emission. The noncoplanar molecular structures resulting from the trigonal‐pyramidal configuration of the phosphine oxide can suppress intermolecular interactions, and thus these compounds exhibit strong deep‐blue emission both in solution and the solid state with high photoluminescent quantum yield (PLQY) of 0.88–0.99 in dilute toluene solution. Solution‐processed nondoped organic light‐emitting diodes featuring PO4 as emitter achieve a maximum current efficiency of 2.36 cd A?1 with CIE coordinates of (0.15, 0.11) that are very close to the NTSC blue standard. Noticeably, all devices based on these small‐molecular fluorescent emitters show striking deep‐blue electroluminescent color stability and extremely low efficiency roll‐off.  相似文献   

11.
Artificial iono‐ and photosensitive membranes based on an amphiphilic aza‐crown‐substituted hemicyanine are assembled on liquid and solid supports and their aggregation behaviour, which is influenced by the binding of metal cations and surface density, is studied. The photoinduced charge‐transfer properties of an analogous non‐amphiphilic hemicyanine in solution are also demonstrated. An asymmetric sandwich dimer model is proposed and existence of such dimers in solution is evidenced by transient absorption and fluorescence anisotropy experiments. Changes in absorption and emission spectra, as well as compression isotherms of the amphiphile observed in the presence of cations, are discussed in terms of 2D molecular reorganisation. Surface‐pressure‐controlled reversible excimer formation at the air–water interphase and excimer‐type emission of Langmuir–Blodgett films in the presence of cations are demonstrated and are discussed on the basis of fibre‐optic fluorimetry and fluorescence microscopy results.  相似文献   

12.
《中国化学》2017,35(12):1869-1874
A metal‐organic framework (MOF ) formulated as [Cd23‐L)2(DMF )4]•H2O ( CdL ) [H2L =9‐(pyridin‐4‐yl)‐ 9H ‐carbazole‐3,6‐dicarboxylic acid, DMF =N ,N ‐dimethylformamide] was synthesized under solvothermal condition. Crystal structural analysis reveals that CdL features the layered 2D framework with L2 ligands as 3‐connected nodes. The compound CdL emits blue‐violet light with the narrow emission peak and the emission maximum at 414 nm upon excitation at the maximum excitation wavelength of 340 nm. The compound CdL has a similar emission spectrum curve to the free H2L ligand that indicates the emission of compound CdL should be originated from the coordinated L2 ligands.  相似文献   

13.
The bulk cyclopolymerization of diepisulfide, 1,2:5,6‐diepithio‐3,4‐di‐O‐methyl‐1,2:5,6‐tetradeoxy‐D ‐mannitol ( 1 ), was studied using R4N+Br? (R = ? CH3, C2H5, C3H7, C4H9, and C7H15) and (C4H9)4N+X? (X = Cl, I, NO3, and ClO4) as the initiators. All the bulk polymerizations of 1 using quaternary tetraalkylammonium salts at 90 °C proceeded without gelation even at high conversion to produce gel‐free polymers consisting of 2,5‐anhydro‐1,5‐dithio‐D ‐glucitol (I) as the major cyclic repeating unit along with 1,5‐anhydro‐2,5‐dithio‐D ‐mannitol (II) and the desulfurized acyclic unit (III) as the minor units. The polymerization rate and molar fraction of the I unit increased with the increasing alkyl chain length of the tetraalkylammonium cation and the increasing nucleophilicity of the counteranion. Tetrabutylammonium chloride exhibited the highest catalytic activity and the highest stereoselectivity, that is, the thiosugar polymer with I:II:III = 81:15:4 and a number‐average molecular weight of 31.9 × 103 was obtained in 85% yield for a polymerization time of 0.5 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 965–970, 2002  相似文献   

14.
Two high molecular weight linear polyesters were investigated to gain insight in how the photophysics of electron donor‐(σ‐spacer)‐electron acceptor (DσA) compounds are affected by incorporation into a polymer. They were prepared by condensation of either adipoyl or sebacoyl chloride with a diol that was functionalized with an N,N‐dialkylaniline donor, a cyclohexyl type σ‐spacer, and a 1,1‐dicyanovinyl acceptor. The solubility, which is very low, and the thermal properties of the polyesters are dictated by physical crosslinking as a consequence of interchain donor‐acceptor interactions. Charge transfer (CT) absorption and emission are observed, which involve CT between DσA moieties of different chains rather than CT processes within a single DσA unit. As a result, the photophysics of the DσA units in the polyesters differs strongly from that of similar DσA compounds in solution. Upon swelling the polymers with THF, the CT fluorescence disappears partly. Analogous polymers containing only an N,N‐dialkylaniline donor display dual fluorescence; one band reflects local emission, while the other is attributed to excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4775–4784, 2004  相似文献   

15.
Three coordination polymers, {[Cd(3‐bpd)2(NCS)2]×C2H5OH}n ( 1 ), {[Cd(3‐bpd)(dpe)(NO3)2]×(3‐bpd)}2 ( 2 ), {[Cd(dpe)2(NCS)2]×3‐bpd×2H2O}n ( 3 ) (3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene; dpe = 1,2‐bis(4‐pyridyl)ethane), were prepared and structurally characterized by a single‐crystal X‐ray diffraction method. In compound 1 , each Cd(II) ion is six‐coordinate bonded to six nitrogen atoms from four 3‐bpd and two NCS? ligands. The 3‐bpd acts as a bridging ligand connecting the Cd(II) ion to generate a 2D layered metal‐organic framework (MOF) by using a rhomboidal‐grid as the basic building units with the 44 topology. In compound 2 , the Cd(II) ion is also six‐coordinate bonded to four nitrogen atoms of two 3‐bpd, two dpe and two oxygen atoms of two NO3? ligands. The 3‐bpd and dpe ligands both adopt bis‐monodentate coordination mode connecting the Cd(II) ions to generate a 2D layered MOF by using a rectangle‐grid as the basic building units with the 44 topology. In compound 3 , two crystallographically independent Cd(II) ions are both coordinated by four nitrogen atoms of dpe ligands in the basal plane and two nitrogen atom of NCS? in the axial sites. The dpe acts as a bridging ligand to connect the Cd(II) ions forming a 2D interpenetrating MOFs by using a square‐grid as the basic unit with the 44 topology. All of their 2D layered MOFs in compounds 1 ‐ 3 are then arranged in a parallel non‐interpenetrating ABAB—packing manner in 1 and 2 , and mutually interpenetrating manner in 3 , respectively, to extend their 3D supramolecular architectures with their 1D pores intercalated with solvent (ethanol in 1 or H2O in 3 ) or free 3‐bpd molecules in 2 and 3 , respectively. The photoluminescence measurements of 1 ‐ 3 reveal that the emission is tentatively assigned to originate from π‐π* transition for 1 and 2 and probably due to ligand‐center luminescence for compounds 3 , respectively.  相似文献   

16.
Over the past few years, two‐dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two‐component molecular networks with a 3‐fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic‐acid‐terminated alkyl chains. The hydrogen‐bonding partner‐recognition‐induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two‐component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces.  相似文献   

17.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

18.
Flexible and dynamic porous coordination polymers (PCPs) with well‐defined nanospaces composed of chromophoric organic linkers provide a scaffold for encapsulation of versatile guest molecules through noncovalent interactions. PCPs thus provide a potential platform for molecular recognition. Herein, we report a flexible 3D supramolecular framework {[Zn(ndc)(o‐phen)]?DMF}n (o‐phen=1,10‐phenanthroline, ndc=2,6‐napthalenedicarboxylate) with confined nanospaces that can accommodate different electron‐donating aromatic amine guests with selective turn‐on emission signaling. This system serves as a molecular recognition platform through an emission‐readout process. Such unprecedented tunable emission with different amines is attributed to its emissive charge‐transfer (CT) complexation with o‐phen linkers. In certain cases this CT emission is further amplified by energy transfer from the chromophoric linker unit ndc, as evidenced by single‐crystal X‐ray structural characterization.  相似文献   

19.
A lamp‐based fluorescence detection (Flu) system for CE was extended with a wavelength‐resolved (WR) detector to allow recording of full protein emission spectra. WRFlu was achieved using a fluorescence cell that employs optical fibres to lead excitation light from a Xe‐Hg lamp to the capillary window and protein fluorescence emission to a spectrograph equipped with a CCD. A 280 nm band pass filter etc. together with a 300 nm short pass cut‐off filter was used for excitation. A capillary cartridge was modified to hold the detection cell in a commercial CE instrument enabling WRFlu in routine CE. The performance of the WRFlu detection was evaluated and optimised using lysozyme as model protein. Based on reference spectral data, a signal‐intensity adjustment was introduced to correct for transmission losses in the detector optics that occurred for lower protein emission wavelengths. CE‐WRFlu of lysozyme was performed using BGEs of 50 mM sodium phosphate (pH 6.5 or 3.0) and a charged‐polymer coated capillary. Using the 3‐D data set, signal averaging over time and emission‐wavelength intervals was carried out to improve the S/N of emission spectra and electropherograms. The detection limit for lysozyme was 21 nM, providing sufficient sensitivity to obtain spectral information on protein impurities.  相似文献   

20.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号