首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the 's in future neutrino experiments in the low energy region (such as BOREXINO or HELLAZ) and thus to probe the Majorana nature of the neutrinos. The conversions may take place for low energy solar neutrinos while being unobservable at the Kamiokande and Super-Kamiokande experiments.  相似文献   

2.
We point out that neutrino events observed at Kamiokande and IMB from SN1987A disfavor the neutrino oscillation parameters preferred by the LSND experiment. For Δm2>0 (the light side), the electron neutrinos from the neutronization burst would be lost, while the first event at Kamiokande is quite likely to be due to an electron neutrino. For Δm2<0 (the dark side), the average energy of the dominantly events is already lower than the theoretical expectations, which would get aggravated by a complete conversion from to  . If taken seriously, the LSND data are disfavored independent of the existence of a sterile neutrino. A possible remedy is CPT violation, which allows different mass spectra for neutrinos and anti-neutrinos and hence can accommodate atmospheric, solar and LSND data without a sterile neutrino. If this is the case, Mini-BooNE must run in rather than the planned ν mode to test the LSND signal. We speculate on a possible origin of CPT violation.  相似文献   

3.
The production of anomalouse + e pairs in heavy ion collisions and the solar neutrino puzzle are two seemingly unrelated problems of the standard model of electroweak interactions. According to the observations made at Homestake and Kamiokande, the flux of solar neutrinos is too small. Furthermore, the observations made at Homestake (neutrino-nucleon scattering) show anticorrelation of the solar neutrino flux with sunspots, unlike the observations made in Kamiokande (neutrino-electron scattering). According to the previously proposed model inspired by T(opological) G(eometro) D(ynamics), anomalouse + e pairs result from the decay of the leptopion, which can be regarded as a bound state of color excited electrons. In this paper we show that the generalization of PCAC ideas leads to a prediction for the lifetime and production cross section of the leptopion in agreement with data. The model is also consistent with constraints coming from Babbha scattering and supernova physics. Leptopion exchange implies a new weak interaction between leptons at low cm energies (of the order of a few MeVs), which explains the Kamiokande-Homestake puzzle. Part of the solar neutrinos are transformed in the convective zone of the Sun to right-handed neutrinos inert with respect to ordinary electroweak interactions, but interacting with electrons via leptopion exchange so that they are observed in Kamiokande. A correct average value for the neutrino flux at Kamiokande is predicted using as input the Homestake flux, and the anticorrelation with sunspots in Kamiokande is predicted to be considerably weaker than in Homestake.  相似文献   

4.
中微子振荡实验——超出标准模型的实验检验(Ⅰ)   总被引:3,自引:0,他引:3  
何景棠 《物理》2001,30(2):74-80
文章总结了中微子振荡实验在历史和现状,介绍了几个太阳中微子丢失实验的结果和几个大气μ中微子丢失实验结果,这些结果表明存在中微子振荡,即中微子具有质量,它是超出标准模型的信号,文章还介绍了21世纪初研究中微子振荡和若干重要实验,噬基线中微子振荡实验以及建造μ子贮存环来产生高能电子中微子束进行中微子振荡的实验以及测量中微子振荡时的CP破坏的设想。  相似文献   

5.
戴长江  盛祥东  何会林 《物理》2000,29(11):679-682
综述了中微子静止质量mυe的测量方法与结果,侧重介绍了超新星SN87A中微子测量的结果,即得到具有能量为8MeV和36MeV的中微子飞行时间差,对于Kamiokande,IMB,Bakson分别为1.9s,6s和9s,由此给出电子中微子静止质量上限为14eV「95%置信水平(C.L.)」,并且描述了计划建造的新型太阳中微子能谱仪,该谱仪在观测太阳中微子能谱的同时,将兼测超新星中微子,提供了在mυe〈1eV范围内测量中微子静止质量的可能性。  相似文献   

6.
We study the possibilities offered by muon storage rings for appearance experiments in order to determine masses and mixing angles for the and oscillations. The dependence of tau event rates on baseline, forward peaking of decay neutrinos with increasing energies, and average fluxes intercepted by detectors of various sizes is discussed. It is found that the baseline length does not significantly affect the rates for oscillations of such magnitudes as are suggested by the current atmospheric neutrino data. Subsequently, the effects of cuts on hadronic and wrong sign leptonic modes are computed and used to plot 90% CL contours for the parameter regions that can be explored in such experiments. The results show that even for modest muon beam energies, convincing coverage and verification of the Super Kamiokande parameters is possible. In addition, a very significant enlargement of present day bounds on the mixing parameters for neutrino oscillations of all types is guaranteed by these types of searches. Received: 4 April 2000 / Revised version: 22 July 2000 / Published online: 8 December 2000  相似文献   

7.
Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.  相似文献   

8.
《Nuclear Physics B》1998,523(3):597-610
It has been known that there are two schemes in the framework of three flavor neutrinos to accommodate the global features of the hot dark matter neutrinos, the solar neutrino deficit and the atmospheric neutrino anomaly in a manner consistent with terreatrial neutrino experiments, i.e., hierarchical mass neutrinos and almost degenerate neutrinos. We deminstrate that the recent result by the CHOOZ experiment excludes the scheme of hierarchical neutrinos. We also point out in the scheme of almost degenerate neutrinos that if neutrinos are Majorana particles then the double β decay experiments must see positive signals on their way to reach a limit more stringent than the present one by a factor of 5.  相似文献   

9.
We consider some cosmological consequences of a relic neutrino asymmetry. A relic neutrino degeneracy enhances the contribution of massive neutrinos to the present energy density of the Universe, and modifies the power spectrum of radiation and matter. We also show that even the smallest neutrino mass consistent with the Super—Kamiokande data is relevant for cosmological models, provided that a relic neutrino asymmetry exists.  相似文献   

10.
《Physics letters. [Part B]》1987,194(4):477-481
Observation of the prompt neutronization burst by Kamiokande II is shown to constrain the mixing parameter sin2ϑ of a 10–100 eV mass range neutrino less than 10−7, implying that the neutrino is unlikely to provide the critical mass of the universe except in a special case of a neutrino decoupled from other lighter neutrinos. Model dependent bounds on neutrino masses are also given for a class of neutrino mixing models.  相似文献   

11.
A number of new huge neutrino telescopes have been built, are being built, and are planned to be built all over the world. With these setups, cosmic neutrinos of high energies can be studied experimentally. Atmospheric neutrinos represent the main backgrounds to such experiments—namely, the atmospheric neutrinos determine how large a setup should be to measure diffuse cosmic neutrino fluxes or what angular resolution of a setup should be in order that searches for pointlike neutrino sources in the sky be successful. The atmospheric-neutrino fluxes are calculated in the present study. At high energies, the atmospheric-neutrino fluxes consist mostly of neutrinos produced in the atmosphere through charmed-particle decays. Three sources of information about charm production are used: (1) data obtained in accelerator experiments, (2) data on cosmicray muons, and (3) predictions of the NLO and QGSM QCD models for the charm-production at energies not available at modern accelerators. The uncertainties in the calculated fluxes of atmospheric neutrinos from charmed-particle decays are estimated to be at a level of 3–5 orders of magnitude.  相似文献   

12.
We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.  相似文献   

13.
H. Ps 《Annalen der Physik》2002,11(8):551-572
The evidence for non‐vanishing neutrino masses from solar and atmospheric neutrinos provides the first solid hint towards physics beyond the standard model. A full reconstruction of the neutrino spectrum may well provide a key to the theoretical structures underlying the standard model such as supersymmetry, grand unification or extra space dimensions. In this article we discuss the impact of absolute neutrinos masses on physics beyond the standard model. We review the information obtained from neutrino oscillation data and discuss the prospects of the crucial determination of the absolute neutrino mass scale, as well as the intriguing connection with the Z‐burst model for extreme‐energy cosmic rays.  相似文献   

14.
The discovery of the neutrino oscillation pattern with solar and atmospheric neutrinos has stimulated systematic studies with long-baseline accelerator experiments. Precise neutrino beamline calculations have demonstrated the importance and paucity of existing hadroproduction data needed to shape the primary meson production in targets and tune available Monte Carlo codes for hadronic shower simulation. After a brief introduction to the physics of neutrino beams, available hadron production data will be reviewed with regards to their parametrization. Fast simulations based on such parameterizations and full Monte Carlo simulations of neutrino beamlines will then be illustrated. The prospective impact of new hadroproduction experiments, such as HARP at CERN and MIPP at Fermilab, will be shown together with some neutrino beamline simulations.  相似文献   

15.
P. Kasper 《Pramana》2004,62(3):611-614
Recent discoveries in the neutrino sector have opened a new frontier in highenergy physics and cosmology. Evidence from neutrino oscillation experiments from around the world indicate that neutrinos oscillate between their different flavours and therefore may have mass. In addition, results from solar and atmospheric neutrino experiments as well as the accelerator neutrino experiment, LSND, cannot all be explained with the three standard model neutrinos. Is this new physics or is there some other explanation? The MiniBooNE experiment presently taking data at Fermilab is designed to address the LSND signal and answer this question. Progress on the MiniBooNE experiment will be presented and prospects for the future will be discussed.  相似文献   

16.
Possible hints on neutrino masses are reviewed. They come from the deficits in the solar as well as atmospheric neutrinos and from need of a significant amount of hot component in the dark matter of the universe. The role of three generation mixing in simultaneously solving the solar and atmospheric neutrino problem is discussed. All the three hints can be reconciled if three neutrinos are almost degenerate. Models for neutrino masses and mixing implied by the above hints are briefly discussed.  相似文献   

17.
We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributionscan be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.  相似文献   

18.
《Physics letters. [Part B]》1987,193(4):514-524
The Mont Blanc group reports a burst of neutrinos in the LSD detector occuring the day before the optical discovery of SN1987A. The Kamiokande (K2) and IMB experiments see neutrino bursts ∼4 h 43 min after LSD. The K2 observations at LSD time here said to contradict LSD. I argue that the K2 results strongly support the LSD pulse(!). I critically analyse the data, and prove that all experiments are compatible at all times. I discuss the plausibility and predictive power of a two-neutrino-burst scenario, wherein the progenitor's core first became a neutron star, and subsequently recollapsed into a black hole (or strange star) as matter left behind by a partially failed shock wave accreted on and around the neutron star, with a calculated fall-back time of a few hours  相似文献   

19.
H A TANAKA 《Pramana》2012,79(5):941-952
The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations in a ~600 MeV muon neutrino beam sent at 295 km from the Japan Proton Accelerator Complex (J-PARC) to the Super Kamiokande (SK) detector in Kamioka. The primary goals of T2K are to search for the appearance of electron neutrinos at SK resulting from ?? 13?>?0 and to precisely measure ?? 23 and $\Delta m^2_{32}$ via ?? ?? disappearance. We report on T2K results obtained from neutrino data taken in 2010 and 2011.  相似文献   

20.
The data collected in the SuperKamiokande detector as of June 1999 are presented. This review covers the complete spectrum of neutrino interactions from solar neutrinos, through the entire spectrum of atmospheric neutrinos, and ending with the neutrino beam produced at KEK for a long-baseline experiment. Different interpretations of these data as demonstrations of neutrino oscillations are discussed. The results of a search for nucleon decay are also summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号