首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Nitrogen‐doped polycyclic aromatic hydrocarbons (aza‐PAHs) have found broad applications in material sciences. Herein, a modular electrochemical synthesis of aza‐PAHs was developed via a rhodium‐catalyzed cascade C?H activation and alkyne annulation. A multifunctional O‐methylamidoxime enabled the high chemo‐ and regioselectivity. The isolation of two key rhodacyclic intermediates made it possible to delineate the exact order of three C?H activation steps. In addition, the metalla‐electrocatalyzed multiple C?H transformation is characterized by unique functional group tolerance, including highly reactive iodo and azido groups.  相似文献   

2.
Two new aromatic poly(amide‐hydrazide)s (PAHs)‐bearing electroactive pyrenylamine units in the backbone were prepared from the phosphorylation polycondensation reactions of N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene ( 1 ) with p‐aminobenzoyl hydrazide (p‐ABH) and m‐aminobenzoyl hydrazide (m‐ABH), respectively. The PAHs could be further cyclodehydrated into the corresponding poly(amide‐1,3,4‐oxadiazole)s in the range of 300–400 °C in the solid film state. All the hydrazide and oxadiazole polymers were soluble in many polar organic solvents and could afford flexible and strong films via solution casting. The poly(amide‐1,3,4‐oxdiazole)s had high glass‐transition temperatures (294–309 °C) and high thermal stability (10% weight‐loss temperature in excess of 520 °C). The dilute solutions of all the hydrazide and oxadiazole polymers showed strong fluorescence with emission maxima around 457–459 nm in the blue region. Copolymers obtained from the polycondensation of equimolar mixture of diacid 1 and 4,4′‐oxydibenzoic acid with p‐ABH or m‐ABH exhibited a significantly increased fluorescence quantum efficiency in comparison with the homopolymers. Cyclic voltammetry results indicated that all the hydrazide and oxadiazole polymers exhibited an ambipolar (n‐ and p‐doping processes) and electrochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

3.
Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C−C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C−F, C−Cl, C−Br, C−N, C−S, C−Se, C−C, etc.) has been achieved by using the ring‐opening strategy. Mechanistically, the C−C cleavage of cyclobutanols can be involved in two pathways: (a) transition‐metal catalyzed β‐carbon elimination; (b) radical‐mediated ‘radical clock’‐type ring opening. The recent advances of our group for the ring‐opening functionalization of tertiary cycloalkanols are described in this account.  相似文献   

4.
Efficient and rapid access to nanographenes and π‐extended fused heteroaromatics is important in materials science. Herein, we report a palladium‐catalyzed efficient one‐step annulative π‐extension (APEX) reaction of polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, producing various π‐extended aromatics. In the presence of a cationic Pd complex, triflic acid, silver pivalate, and diiodobiaryls, diverse unfunctionalized PAHs and heteroaromatics were directly transformed into larger PAHs, nanographenes, and π‐extended fused heteroaromatics in a single step. In the reactions that afford [5]helicene substructures, simultaneous dehydrogenative ring closures occur at the fjord regions to form unprecedented larger nanographenes. This successive APEX reaction is notable as it stiches five aryl–aryl bonds by C−H functionalization in a single operation. Moreover, the unique molecular structures, crystal‐packing structures, photophysical properties, and frontier molecular orbitals of the thus‐formed nanographenes were elucidated.  相似文献   

5.
Compound‐specific isotopic analysis (CSIA) can provide information about the origin of analysed compounds; for instance, polycyclic aromatic hydrocarbons (PAHs) in aerosols. This could be a valuable tool in source apportionment of particulate matter (PM) air pollution. Because gas chromatography–combustion–isotope ratio mass spectrometry (GC‐C‐IRMS) analysis requires an amount of at least 10 ng of an individual PAH, a high concentration of PAHs in the injected extract is needed. When the concentration is low a large volume injector creates the possibility of introducing a satisfactory amount of individual PAHs. In this study a temperature‐programmable injector was coupled to GC‐C‐IRMS and injection parameters (solvent level, transfer column flow, transfers time) were optimised using six solid aromatic compounds (anthracene, fluoranthene, pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene) dissolved in n‐pentane and EPA 610 reference mixture. CSIA results for solid PAHs were compared with results obtained for the single components analysed by elemental analysis–isotope ratio mass spectrometry. The injection method was validated for two sample injection volumes, 50 and 100 µL. This method was also compared with commonly used splitless injection. To be included in the study, measurements had to have an uncertainty lower than 0.5‰ for and a minimum peak height of 200 mV. The lower concentration limits at which these criteria were fulfilled for PAHs were 30 mg/L for 1 µL in splitless injection and 0.3 and 0.2 mg/L for 50 and 100 µL, respectively, in large volume injection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal‐extracting time‐of‐flight mass spectrometer (oTOF‐MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross‐linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C―H bonds. Breakage of C―C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post‐source decay analysis using an axial time‐of‐flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas pressures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
We describe a novel, short, and flexible approach to diverse N‐doped polycyclic aromatic hydrocarbons (PAHs) through gold‐catalyzed π‐extension of anthranils with o‐ethynylbiaryls as reagents. This strategy uses easily accessible starting materials, is simple due to high step and atom economy, and shows good functional‐group compatibility as well as scale‐up potential. Mechanistically, the tandem reaction is proposed to involve a nucleophilic addition/ring opening/regiospecific C?H annulation/protodeauration sequence terminated by a Friedel–Crafts‐type cyclization. Photophysical studies of the products indicated violet‐blue fluorescence emission with quantum yields up to 0.45.  相似文献   

8.
A series of polycyclic aromatic hydrocarbons (PAHs) of different size and shape has been used to characterize the chromatographic behavior of five calix[4]arene stationary phases in 1,3‐alternate conformation synthesized in our laboratory. The selection of linear, four‐ring nonlinear, and five‐ring PAHs gave data on selectivity changes across range of the calix[4]arene columns. Retention of the 12 aromatic solutes has been evaluated at various methanol contents in the mobile phase (70–100% v/v) and column temperatures (20–45°C). The thermodynamic parameters underlying the retention mechanisms revealed that each of the five calix[4]arene columns exhibited variation in selectivity and retention of PAHs caused by enthalpy and entropy effects. The calixarene stationary phases substituted with electron‐withdrawing groups exhibit enhanced selectivity toward PAHs in comparison to the rest of the investigated columns. The observed divergences are due to differences in solute–stationary phase interactions and originate in π–π and π‐electron transfer specific to the analytes and the type of calix[4]arene functionalization at the upper rim, as well as steric and sorption phenomena.  相似文献   

9.
A new set of star‐shaped polycyclic aromatic hydrocarbons (PAHs) based on naphthalene‐fused truxenes, TrNaCn (n=1–4), were synthesized and characterized. The synthesis involved a microwave‐assisted six‐fold Suzuki coupling reaction, followed by oxidative cyclodehydrogenation. Multiple dehydrocyclization products could be effectively isolated in a single reaction, thus suggesting that the oxidative cyclodehydrogenation reaction involved a stepwise ring‐closing process. The thermal, optical, and electrochemical properties and the self‐assembly behavior of the resulting oxidized samples were investigated to understand the impact of the ring‐fusing process on the properties of the star‐shaped PAHs. Distinct bathochromic shift of the absorption maxima (λmax) revealed that the molecular conjugation extended with the stepwise ring‐closing reactions. The optical band‐gap energy of these PAHs varied significantly on increasing the number of fused rings, thereby resulting in readily tunable emissive properties of the resultant star‐shaped PAHs. Interestingly, the generation of rigid “arms” by using perylene analogues caused TrNaC2 and TrNaC3 to show significantly enhanced photoluminescence quantum yields (PLQYs) in solution (η=0.65 and 0.66, respectively) in comparison with those of TrNa and TrNaC1 (η=0.08 and 0.16, respectively). Owing to strong intermolecular interactions, the TrNa precursor was able to self‐assemble into rod‐like microcrystals, which could be facilely identified by the naked eye, whilst TrNaC1 self‐assembled into nanosheets once the naphthalene rings had fused. This study offers a unique platform to gain further insight into—and a better understanding of—the photophysical and self‐assembly properties of π‐extended star‐shaped PAHs.  相似文献   

10.
A one‐step, template‐free method is described to synthesize porous carbons (PCs) in situ on a metal surface by using a room‐temperature, atmospheric‐pressure dielectric barrier discharge (DBD) plasma. This method not only features high efficiency, environmentally friendliness, and low cost and simple equipment, but also can conveniently realize large‐area synthesis of PCs by only changing the design of the DBD reactor. The synthesized PCs have a regulated nestlike morphology, and thus, provide a high specific surface area and high pore volume, which result in excellent adsorption properties. Its applicability was demonstrated by using a PC‐coated stainless‐steel fiber as a solid‐phase microextraction (SPME) fiber to preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to analysis by gas chromatography with flame ionization detection (GC‐FID). The results showed that the fiber exhibited excellent enrichment factors (4.1×104 to 3.1×105) toward all tested PAHs. Thus, the PC‐based SPME‐GC‐FID provides low limits of detection (2 to 20 ng L ?1), good precision (<7.8 %), and good recoveries (80–115 %) for ultra‐sensitive determination of PAHs in real water samples. In addition, the PC‐coated fiber could be stable enough for more than 500 replicate extraction cycles.  相似文献   

11.
Described herein is the synthesis of stable oxonium‐doped polycyclic aromatic hydrocarbons (PAHs) by the rhodium‐catalyzed C−H activation/annulations of naphthalene‐type aldehydes with internal alkynes. This protocol provides four divergent reaction types, including two unexpected annulations with an oxygen transposition process, which lead to diverse types of phenalenyl‐fused pyrylium cations comprising a four‐, five‐, or six‐ring‐fused π‐conjugated core. The annulations exhibit an exquisite regioselectivity and a high tolerance of sensitive functional groups. These PAHs feature intriguing photophysical properties such as full‐color tunable fluorescence emission, high quantum yield, and positively charged core, and can be reduced easily to the phenalenyl radicals.  相似文献   

12.
We report a modular synthetic strategy for accessing heteroatom‐containing polycyclic aromatic hydrocarbons (PAHs). Our approach relies on the controlled generation of transient heterocyclic alkynes and arynes. The strained intermediates undergo in situ trapping with readily accessible oxadiazinones. Four sequential pericyclic reactions occur, namely two Diels–Alder/retro‐Diels–Alder sequences, which can be performed in a stepwise or one‐pot fashion to assemble four new carbon–carbon (C?C) bonds. These studies underscore how the use of heterocyclic strained intermediates can be harnessed for the preparation of new organic materials.  相似文献   

13.
The ability of Ex 2 Box4+ as a host, able to trap guests containing both π‐electron rich (polycyclic aromatic hydrocarbons‐PAHs) and π‐electron poor (quinoid‐ and nitro‐PAHs) moieties was investigated to shed light on the main factors that control the host–guest (HG) interaction. The nature of the HG interactions was elucidated by energy decomposition (EDA‐NOCV), noncovalent interaction (NCI), and magnetic response analyses. EDA‐NOCV reveals that dispersion contributions are the most significant to sustain the HG interaction, while electrostatic and orbital contributions are very tiny. In fact, no significant covalent character in the HG interactions was observed. The obtained results point strictly to NCIs, modulated by dispersion contributions. Regardless of whether the guests contain π‐electron‐rich or π‐electron‐poor moieties, and no significant charge‐transfer was observed. All in all, HG interactions between guests 3‐14 and host 2 are predominantly modulated by π‐π stacking.  相似文献   

14.
The C60—polycinnamaldehyde (C60—PCA) and C60—polyphenylacetylene (C60—PPA) polymers were synthesized by the Friedel—Craft reaction and applied as piezoelectric (PZ) quartz crystal coating materials. A C60—polycinnamaldehyde (PCA) coated piezoelectric quartz crystal liquid sensor with a homemade computer interface was prepared and applied as a PZ hemoglobin sensor. The adsorption of hemoglobin onto the C60—PCA coated crystal resulted in a decreased oscillating frequency. The variations in crystal frequency were converted to voltage with a frequency to voltage converter, followed by amplification with OPA and data acquisition with an analog to digital converter. The PZ hemoglobin sensor exhibited good sensitivity of 6530 Hz/(mg/mL) with a detection limit at the ppm level for hemoglobin. Further, a C60—polyphenylacetylene (C60—PPA) coated piezoelectric quartz crystal gas sensor with an Intell‐8255 data processing system for various olefin vapors was also made. The aromatic hydrocarbons such as toluene seem to have greater adsorption onto C60—PPA membrane than alkynes, alkenes, and alkanes. The adsorption of polycyclic aromatic hydrocarbons (PAHs) onto the C60—PPA membrane was also examined. The C60—PPA coated PZ crystal gas sensor showed much better sensitivity for PAHs than for other olefins such as toluene, 1‐hexyne and 1‐hexene, and a much larger frequency shift for naphthalene than other PAHs was also found.  相似文献   

15.
Due to their ubiquity in nature and frequent use in organic electronic materials, benzothiophenes are highly sought after. Here we set out an unprecedented procedure for the formation of benzothiophenes by the twofold vicinal C?H functionalization of arenes that does not require metal catalysis. This one‐pot annulation proceeds through an interrupted Pummerer reaction/[3,3]‐sigmatropic rearrangement/cyclization sequence to deliver various benzothiophene products. The procedure is particularly effective for the rapid synthesis of benzothiophenes from non‐prefunctionalized polyaromatic hydrocarbons (PAHs).  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are key components of organic electronics. The electronic properties of these carbon‐rich materials can be controlled through doping with heteroatoms such as B and N, however, few convenient syntheses of BN‐doped PAHs have been reported. Described herein is the rationally designed, two‐step syntheses of previously unknown ixene and BN‐doped ixene (B2N2‐ixene), and their characterizations. Compared to ixene, B2N2‐ixene absorbs longer‐wavelength light and has a smaller electrochemical energy gap. In addition to its single‐crystal structure, scanning tunneling microscopy revealed that B2N2‐ixene adopts a nonplanar geometry on a Au(111) surface. The experimentally obtained electronic structure of B2N2‐ixene and the effect of BN‐doping were confirmed by DFT calculations. This synthesis enables the efficient and convenient construction of BN‐doped systems with extended π‐conjugation that can be used in versatile organic electronics applications.  相似文献   

17.
A methodology based on microwave‐assisted extraction (MAE) and LC with fluorescence detection (FLD) was investigated for the efficient determination of 15 polycyclic aromatic hydrocarbons (PAHs) regarded as priority pollutants by the US Environmental Protection Agency and dibenzo(a,l)pyrene in atmospheric particulate samples. PAHs were successfully extracted from real outdoor particulate matter (PM) samples with recoveries ranging from 81.4 ± 8.8 to 112.0 ± 1.1%, for all the compounds except for naphthalene (62.3 ± 18.0%) and anthracene (67.3 ± 5.7%), under the optimum MAE conditions (30.0 mL of ACN for 20 min at 110°C). No clean‐up steps were necessary prior to LC analysis. LOQs ranging from 0.0054 ng/m3 for benzo(a)anthracene to 0.089 ng/m3 for naphthalene were reached. The validated MAE methodology was applied to the determination of PAHs from a set of real world PM samples collected in Oporto (north of Portugal). The sum of particulate‐bound PAHs in outdoor PM ranged from 2.5 and 28 ng/m3.  相似文献   

18.
Ten examples of unsymmetrically benzannulated, boron‐doped polycyclic aromatic hydrocarbons (B‐PAHs) were prepared by a one‐pot protocol using 4,5‐dichloro‐1,2‐bis(trimethylsilyl)benzene ( 1 ), BBr3, and selected PAHs—among them anthracene, benzo[a ]pyrene, biphenylene, and fluoranthene. After mesitylation at the boron centers, the resulting air‐ and water‐stable products were investigated by 1H/11B{1H}/13C{1H} NMR spectroscopy, X‐ray crystallography, cyclic voltammetry, and UV/Vis absorption/emission spectroscopy. The experiments were augmented by DFT calculations. Most of the B‐PAHs are brightly luminescent (Φ PL up to 90 %) and undergo reversible reduction at moderate half‐wave potentials. The two chloro substituents of 1 are not only mandatory for accomplishing efficient diborylation, but can subsequently be used for Stille‐type coupling reactions to introduce 2‐thienyl moieties. Alternatively, Cl/H exchange is achievable with HSiEt3 in a quantitative, Pd‐catalyzed transformation.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs), organic compounds formed by at least two condensed aromatic rings, are ubiquitous environmental pollutants that are produced by incomplete combustion of organic materials. PAHs have been classified as carcinogenIC to humans by the International Agency for Research on Cancer, because they can bind to DNA, causing mutations. Therefore, the levels of PAHs in human urine can be used as an indicator for potential carcinogenesis and cell mutation. An analytical method was developed for the accurate measurement of PAHs in urine using high‐resolution gas chromatography–mass spectrometry. Urine samples were extracted by an Oasis HLB extraction cartridge after enzymatic hydrolysis with a β‐glucuronidase/arylsulfatase cocktail. The 18 PAHs were separated using an Agilent DB‐5 MS capillary column (30 m × 0.25 mm, 0.25 μm) and monitored by time‐of‐flight mass spectrometry. Under the optimized method, the linearity of calibration curves was >0.994. The limits of detection at a signal‐to‐noise ratio of 3 were 10–100 ng/L. The coefficients of variation were in the range of 0.4–9.0%. The present method was highly accurate for simultaneous determination of 18 PAHs in human urine and could be applied to monitoring and biomedical investigations to check exposure of PAHs.  相似文献   

20.
Explicitly correlated second‐order Green's function (GF2‐F12) is presented and applied to polycyclic aromatic hydrocarbons (PAHs), oligothiophene, and porphyrins. GF2 suffers from slow convergence of orbital expansions as in the ordinary post Hartree–Fock methods in ab initio theory, albeit the method is capable of providing quantitatively accurate ionization energies (IE) near the complete basis set limit. This feature is significantly mitigated by introducing F12 terms of explicitly correlated electronic structure theory. It is demonstrated that GF2‐F12 presents accurate IE with augmented triple‐zeta quality of basis sets. The errors from experimental results are typically less than 0.15 eV for PAHs. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号