首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference (RNAi) mediated by small interfering RNA (siRNA) duplexes is a powerful therapeutic modality, but the translation of siRNAs from the bench into clinical application has been hampered by inefficient delivery in vivo. An innovative delivery strategy involves fusing siRNAs to a three-way junction (3WJ) motif derived from the phi29 bacteriophage prohead RNA (pRNA). Chimeric siRNA-3WJ molecules are presumed to enter the RNAi pathway through Dicer cleavage. Here, we fused siRNAs to the phi29 3WJ and two phylogenetically related 3WJs. We confirmed that the siRNA-3WJs are substrates for Dicer in vitro. However, our results reveal that siRNA-3WJs transfected into Dicer-deficient cell lines trigger potent gene silencing. Interestingly, siRNA-3WJs transfected into an Argonaute 2-deficient cell line also retain some gene silencing activity. siRNA-3WJs are most efficient when the antisense strand of the siRNA duplex is positioned 5′ of the 3WJ (5′-siRNA-3WJ) relative to 3′ of the 3WJ (3′-siRNA-3WJ). This work sheds light on the functional properties of siRNA-3WJs and offers a design rule for maximizing their potency in the human RNAi pathway.  相似文献   

2.
Short double‐stranded RNAs, which are known as short interfering RNA (siRNA), can be used to specifically down‐regulate the expression of the targeted gene in a process known as RNA interference (RNAi). However, the success of gene silencing applications based on the use of synthetic siRNA critically depends on efficient intracellular delivery. Polycationic branched macromolecules such as poly(amidoamine) (PAMAM) dendrimers show a strong binding affinity for RNA molecules and, hence, can provide an effective, reproducible, and relatively nontoxic method for transferring siRNAs into animal cells. Notwithstanding these perspectives, relatively few attempts have been made so far along these lines to study in detail the molecular mechanisms underlying the complexation process between PAMAMs and siRNAs. In this work we combine molecular simulation and experimental approaches to study the molecular requirements of the interaction of RNA‐based therapeutics and PAMAM dendrimers of different generations. The dendrimers and their siRNA complexes were structurally characterized, and the free energy of binding between each dendrimer and a model siRNA was quantified by using the well‐known MM/PBSA approach. DOSY NMR experiments confirmed the structural in silico prediction and yielded further information on both the complex structure and stoichiometry at low N/P ratio values. siRNA/PAMAM complex formation was monitored at different N/P ratios using gel retardation assays, and a simple model was proposed, which related the amount of siRNA complexed to the entropy variation upon complex formation obtained from the computer simulations.  相似文献   

3.
微小RNA(microRNA,miRNA)和短链干扰RNA (small interfering RNA,siRNA)是两类具有调节基因表达功能的内源性非编码性小RNA分子.它们已成为多种疾病的潜在治疗药物,逐渐被应用于基因治疗中,而将小RNA应用于基因治疗亟需一种安全高效的递送载体.壳聚糖及其衍生物作为一种可降解、低...  相似文献   

4.
As a new treatment technique,photothermal therapy(PTT) has aroused worldwide attention in cancer treatment,mainly due to its excellent absorption ability,easy regulation,and biodegradability.Photothermal conversion materials with enhanced permeability and retention effect can be targeted easily to tumor tissue.They can accumulate efficiently to tumor tissues and allow normal tissues and organs not to be affected by temperature,thus significantly helping to reduce the systemic toxicity and improve the antitumor effect.However,PTT alo ne often suffers from the rapeutic resistance and reduced therapeutic efficacy,due to photothermal nanomaterial-mediated fundamental cellular defense mechanism of heat shock response,which could be inhibited by small interfering RNA(siRNA).Nevertheless,photothermal conversion materials as an excellent siRNA delivery carrier may conside rably enhance the delivery efficiency of siRNA.Therefore,photothermal and RNA interfering(RNAi) synergistic therapy has recently aroused extensive attention in tumor treatment.In this review,we mainly summarize the recent advances of photothermal and RNAi synergistic therapy,including some synergistic therapeutic nanoplatforms of inorganic and organic photothermal materials and other combined therapies such as combining with small molecular antitumor agents or PDT/imaging.The combination of various treatment techniques may considerably improve the synergistic therapeutic effect of PTT and RNAi in the treatment of cancers.  相似文献   

5.
Short interfering RNA (siRNA) is a promising molecular tool for cancer therapy, but its clinical success is limited by the lack of robust in vivo delivery systems. Rationally designed DNA nanoparticles (DNPs) have emerged as facile delivery vehicles because their physicochemical properties can be precisely controlled. Nonetheless, few studies have used DNPs to deliver siRNAs in vivo, and none has demonstrated therapeutic efficacy. Herein, we constructed a number of DNPs of rectangular and tubular shapes with varied dimensions using the modular DNA brick method for the systemic delivery of siRNA that targets anti‐apoptotic protein Bcl2. The siRNA delivered by the DNPs inhibited cell growth both in vitro and in vivo, which suppressed tumor growth in a xenograft model that specifically correlated with Bcl2 depletion. This study suggests that DNPs are effective tools for the systemic delivery of therapeutic siRNA and have great potential for further clinical translation.  相似文献   

6.
A critical need still remains for effective delivery of RNA interference (RNAi) therapeutics to target tissues and cells. Self-assembled lipid- and polymer-based systems have been most extensively explored for transfection with small interfering RNA (siRNA) in liver and cancer therapies. Safety and compatibility of materials implemented in delivery systems must be ensured to maximize therapeutic indices. Hydrogel nanoparticles of defined dimensions and compositions, prepared via a particle molding process that is a unique off-shoot of soft lithography known as particle replication in nonwetting templates (PRINT), were explored in these studies as delivery vectors. Initially, siRNA was encapsulated in particles through electrostatic association and physical entrapment. Dose-dependent gene silencing was elicited by PEGylated hydrogels at low siRNA doses without cytotoxicity. To prevent disassociation of cargo from particles after systemic administration or during postfabrication processing for surface functionalization, a polymerizable siRNA pro-drug conjugate with a degradable, disulfide linkage was prepared. Triggered release of siRNA from the pro-drug hydrogels was observed under a reducing environment while cargo retention and integrity were maintained under physiological conditions. Gene silencing efficiency and cytocompatibility were optimized by screening the amine content of the particles. When appropriate control siRNA cargos were loaded into hydrogels, gene knockdown was only encountered for hydrogels containing releasable, target-specific siRNAs, accompanied by minimal cell death. Further investigation into shape, size, and surface decoration of siRNA-conjugated hydrogels should enable efficacious targeted in vivo RNAi therapies.  相似文献   

7.
Nonpolar nucleosides with varying size and shape have been used to study the hydrogen-bonding stabilization and steric effects on RNA interference. The uracil and adenine residues of siRNA guide strands have been replaced by nonpolar isosteres of uracil and adenine and by steric variants. RNAi experiments targeting Renilla luciferase mRNA have shown close correlation between siRNA thermal stability and gene suppression. Interestingly, siRNA modified at position 7 on the guide strand does not follow this correlation, having substantial RNAi activity despite low thermal stability. Sequence-selectivity studies were carried out at this position with mutated target mRNAs and nucleobase analogues with varied size (2,4-difluoro- and 2,4-dichlorobenzene) and different shape (2,3-dichlorobenzene, 4-methylbenzimidazole). The results point out the importance of nucleobase shape and steric effects in RNA interference.  相似文献   

8.
RNA interference (RNAi) is a process whereby short-interfering RNAs (siRNA) silence gene expression in a sequence-specific manner. We have screened a chemical library of substituted dihydropteridinones and identified a nontoxic, cell permeable, and reversible inhibitor of the RNAi pathway in human cells. Biochemical and fluorescence resonance-energy transfer experiments demonstrated that one of the compounds, named ATPA-18, inhibited siRNA unwinding that occurred within 6 hr of siRNA transfection. Extracts prepared from ATPA-18-treated cells also exhibited a decrease in target RNA cleavage by activated RNA-induced silencing complex (RISC*). Interestingly, when activated RISC*, which harbors unwound antisense siRNA, was treated with ATPA-18 in vitro, target RNA cleavage was not affected, indicating that this compound inhibited siRNA unwinding or steps upstream of unwinding in the RNAi pathway. Our results also establish the timing of siRNA unwinding and show that siRNA helicase activity is required for RNAi. ATPA-18 analogs will therefore provide a new class of small molecules for studying RNAi mechanisms in a variety of model organisms and deciphering in vivo genetic functions through reverse genetics.  相似文献   

9.
Multi‐component MOFs contain multiple sets of unique and hierarchical pores, with different functions for different applications, distributed in their inter‐linked domains. Herein, we report the construction of a class of precisely aligned flexible‐on‐rigid hybrid‐phase MOFs with a unique rods‐on‐octahedron morphology. We demonstrated that hybrid‐phase MOFs can be constructed based on two prerequisites: the partially matched topology at the interface of the two frameworks, and the structural flexibility of MOFs with acs topology, which can compensate for the differences in lattice parameters. Furthermore, we achieved domain selective loading of multiple guest molecules into the hybrid‐phase MOF, as observed by scanning transmission electron microscopy–energy‐dispersive X‐ray spectrometry elemental mapping. Most importantly, we successfully applied the constructed hybrid‐phase MOF to develop a dual‐drug delivery system with controllable loading ratio and release kinetics.  相似文献   

10.
RNA interference (RNAi) gene silencing technologies have shown significant potential for treating various diseases, including cancer. However, clinical success in cancer therapy remains elusive, mainly owing to suboptimal in vivo delivery of RNAi therapeutics such as small interference RNA (siRNA) to tumors. Herein, we developed a library of polymers that respond to a narrow pH change (ultra‐pH‐responsive), and demonstrated the utility of these materials in targeted and deep tumor‐penetrating nanoparticle (NP) for in vivo RNAi. The new NP platform is mainly composed of the following key components: i) internalizing RGD (iRGD) to enhance tumor targeting and tissue penetration; ii) polyethylene glycol (PEG) chains to prolong blood circulation; and iii) sharp pH‐responsive hydrophobic polymer to improve endosome escape. Through systematic studies of structure–function relationship, the optimized RNAi NPs (<70 nm) showed efficient gene silencing and significant inhibition of tumor growth with negligible toxicities in vivo.  相似文献   

11.
Instability and poor targeting causes the long‐term patency of RNA‐modified tissue engineering blood vessels (TEBVs) remaining unsatisfactory. RNA can be enriched in exosome and then delivered into targeted cells while whether exosome‐modified TEBVs achieve RNA targeted delivery is unclear. Here, to promote the expression of klotho protein on the mesenchymal stem cell (MSC)‐derived exosomes, klotho plasmids are first transfected into MSCs, and adenosine kinase (ADK) siRNA is then loaded into exosome (klotho/ADK siRNA‐exosome) using electrotransfection. Flow chamber results show that klotho/ADK siRNA‐exosome can effectively capture circulating endothelial progenitor cells (EPCs). Besides, the captured EPCs can endocytose this exosome, and then decompose it into klotho protein and ADK siRNA. Moreover, ADK siRNA promotes the paracrine of proangiogenic factors and adenosine from EPCs, which further facilitate proliferation and migration of endothelial cells. Based on polyethyleneimine‐capped gold nanoparticles, exosome‐modified TEBVs are constructed through layer‐by‐layer assembly. Animal experimental results show that klotho/ADK siRNA‐exosome‐modified TEBVs can maintain the patency up to one month, and good endothelialization is observed. In short, one exosome‐modified TEBV is constructed, capture molecules on the surface of exosome capture the circulating EPCs, and the loaded RNA achieves its purpose of accurate treatment depending on the needs of patients.  相似文献   

12.
RNA interference (RNAi) is a promising approach for disease treatments. But the development of safe and effective delivery carriers remains a major challenge. Organic–inorganic hybrid nanoparticles (NPs), with the integration of functions from distinct materials, show great potential in small interfering RNA (siRNA) delivery. Herein, pH responsive amorphous calcium carbonate NPs (ACC NPs) are prepared using flash nanoprecipitation and hybrid NPs are constructed by coating ACC NPs with polyethyleneimine (PEI) for efficient siRNA delivery. PEI/ACC NPs show robust pH responsiveness and stability as well as effective siRNA loading and protection. Furthermore, siRNA-loaded PEI/ACC NPs demonstrate enhanced cellular uptake and efficient endosomal escape, mediating improved siRNA delivery compared to pure PEI. These findings suggest that PEI/ACC NPs may have great potential in siRNA delivery for RNAi-based therapy.  相似文献   

13.
Topical use of small interfering RNA (siRNA) as a therapeutic nucleic acid is increasingly studied for the treatment of skin diseases and for the improvement of skin properties. However, naked siRNA transdermal delivery is limited by its low stability in the body and low permeability into target cells. This is due to various skin barriers such as the stratum corneum that has multiple lipid bilayers and epidermal layers that have tight junctions. In this study, we investigate non-invasive transdermal siRNA delivery using two functional peptides: AT1002, which is a tight junction modulator and 6-mer synthetic peptide belonging to a novel class of compounds that reversibly increases paracellular transport of molecules across the epithelial barrier; and Tat, which is a cell-penetrating peptide applicable as a transdermal siRNA delivery enhancer. We examined whether expression of the tight junction protein zonula occludens protein 1 (ZO-1) was detected in mouse skin applied with AT1002. Additionally, siRNA stabilities for RNaseA using Tat and AT1002 were assessed. We also determined the intradermal delivery efficiency of siRNA using functional peptides by confocal laser microscopy of fluorescently labeled siRNA in mouse skin. We found that the Tat analog and AT1002 strongly increased siRNA stability against RNaseA. In addition, ZO-1 disappeared from the skin after treatment with AT1002, yet recovered with time after washing. Finally, we also found that Tat and AT1002 peptides accelerate transdermal siRNA delivery both widely and effectively. Thus, combination of Tat and AT1002 is expected to be a transdermal delivery enhancer of siRNA.  相似文献   

14.
Chiu YL  Ali A  Chu CY  Cao H  Rana TM 《Chemistry & biology》2004,11(8):1165-1175
RNA interference (RNAi) is the process by which short-interfering RNA (siRNA) target a specific mRNA for degradation through interactions with an RNA-induced silencing complex (RISC). Here, a clear correlation between siRNA localization, cellular uptake, and RNAi activity was discovered by delivering siRNA into cells using siRNA-TAT(47-57) peptide, siRNA-TAT(47-57)-derived oligocarbamate conjugates, or nanoparticles. For successful RNAi, the localization of siRNA was distinctly perinuclear, suggesting that siRNA is targeted to these regions for interactions with RISC to induce RNAi. siRNA sequence variation and the presence of the target mRNA apparently did not change the subcellular localization pattern of siRNA. Intriguingly, siRNA conjugated to TAT(47-57) peptide or TAT(47-57)-derived oligocarbamate resulted in efficient RNAi activity and perinuclear localization of siRNA that was distinctly different from nonconjugated free TAT peptide nucleolar localization. These results suggest that interactions with RISC dictate siRNA localization even when siRNA is conjugated to TAT(47-57) peptide.  相似文献   

15.
Herein we report a rapid and green strategy for the preparation of amorphous calcium phosphate mesoporous microspheres (ACP‐MSs) using adenosine 5′‐diphosphate disodium salt (ADP) as an organic phosphorus source by a microwave‐assisted hydrothermal method. The effects of the pH value, the reaction time, and temperature on the crystal phase and morphology of the product are investigated. The ADP biomolecules used in this strategy play an important role in the formation of ACP‐MSs. The as‐prepared ACP‐MSs are efficient for anticancer drug delivery by using doxorubicin (Dox) as a model drug, and the Dox‐loaded ACP‐MSs show a high ability to damage cancer cells. Moreover, the ACP‐MSs drug delivery system exhibits a pH‐responsive drug‐release behavior due to the degradation of ACP‐MSs at a low pH value, thus, it is promising for applications in pH‐responsive drug delivery.  相似文献   

16.
The efficient delivery of small interfering RNA (siRNA) to tumor cells still remains a great challenge. Of the various nanocarriers, protein nanocages have attracted extensive interest due to their unique structure and suitable characteristics derived from their proteinaceous nature. However, most reported protein nanocages that are developed are based on virus capsid proteins, which may raise safety concerns, including those related to gene mutation and carcinogenesis. The development of nonviral protein‐based systems for siRNA delivery is greatly needed. In this study, a novel siRNA delivery system based on heat shock protein (Hsp) nanocages is developed by a genetic engineering method. The delivery system could condense siRNA into stable complexes and protect the condensed siRNA from degradation. A cellular uptake analysis shows that siRNA is introduced into tumor cells mediated by Hsp‐R9 nanocages. Green fluorescent protein (GFP) expression in HeLa‐EGFP cells is significantly downregulated by Hsp‐R9/siRNA complexes. The results indicate that Hsp nanocages may be a good platform for siRNA delivery into tumor cells.  相似文献   

17.
siRNA delivery remains a major challenge in RNAi‐based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self‐assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer‐based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer‐based self‐assembled drug delivery in biomedical applications.  相似文献   

18.
The use of nanoparticle‐stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine‐functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self‐assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90 % knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo‐like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.  相似文献   

19.
Quantum dot-mediated siRNA theranostic systems enhance the siRNA delivery, and track the uptake and distribution of siRNA.  相似文献   

20.
Carbohydrates, along with proteins and peptides, are known to represent a major class of biomacromolecules involved in calcium carbonate biomineralization. However, in spite of multiple physical and biochemical characterizations, the explicit role of saccharide macromolecules (long chains of carbohydrate molecules) in mineral deposition is not yet understood. In this study, we investigated the influence of two common acidic monosaccharides (MSs), the two simplest forms of acidic carbohydrates, namely glucuronic and galacturonic acids, on the formation of calcite crystals in vitro. We show here that the size, morphology, and microstructure of calcite crystals are altered when they are grown in the presence of these MSs. More importantly, these MSs were found to become incorporated into the calcite crystalline lattice and induce anisotropic lattice distortions, a phenomenon widely studied for other biomolecules related to CaCO3 biomineralization, but never before reported in the case of single MSs. Changes in the calcite lattice induced by MSs incorporation were precisely determined by high-resolution synchrotron powder X-ray diffraction. We believe that the results of this research may deepen our understanding of the interaction of saccharide polymers with an inorganic host and shed light on the implications of carbohydrates for biomineralization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号