首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broad‐spectrum proteasome inhibitors are applied as anticancer drugs, whereas selective blockage of the immunoproteasome represents a promising therapeutic rationale for autoimmune diseases. We here aimed at identifying minimal structural elements that confer β5c or β5i selectivity on proteasome inhibitors. Based on the natural product belactosin C, we synthesized two β‐lactones featuring a dimethoxybenzyl moiety and either a methylpropyl (pseudo‐isoleucin) or an isopropyl (pseudo‐valine) P1 side chain. Although the two compounds differ only by one methyl group, the isoleucine analogue is six times more potent for β5i (IC50=14 nM ) than the valine counterpart. Cell culture experiments demonstrate the cell‐permeability of the compounds and X‐ray crystallography data highlight them as minimal fragments that occupy primed and non‐primed pockets of the active sites of the proteasome. Together, these results qualify β‐lactones as a promising lead‐structure motif for potent nonpeptidic proteasome inhibitors with diverse pharmaceutical applications.  相似文献   

2.
Clinically applied proteasome inhibitors induce cell death by concomitant blockage of constitutive and immunoproteasomes. In contrast, selective immunoproteasome inhibition is less cytotoxic and has the potential to modulate chronic inflammation and autoimmune diseases. In this study, we rationally designed decarboxylated peptides that covalently target a non‐catalytic cysteine of the immunoproteasome subunit β5i with α‐chloroacetamide‐containing sidechains. The enhanced isoform specificity decreased cytotoxic effects and the compound suppressed the production of inflammatory cytokines. Structure‐based optimization led to over 150‐fold selectivity for subunit β5i over β5c. This new compound class provides a promising starting point for the development of selective immunoproteasome inhibitors as potential anti‐inflammatory agents.  相似文献   

3.
BACKGROUND: The 26S proteasome is responsible for most cytosolic proteolysis, and is an important protease in major histocompatibility complex class I-mediated antigen presentation. Constitutively expressed proteasomes from mammalian sources possess three distinct catalytically active species, beta1, beta2 and beta5, which are replaced in the gamma-interferon-inducible immunoproteasome by a different set of catalytic subunits, beta1i, beta2i and beta5i, respectively. Based on preferred cleavage of short fluorogenic peptide substrates, activities of the proteasome have been assigned to individual subunits and classified as 'chymotryptic-like' (beta5), 'tryptic-like' (beta2) and 'peptidyl-glutamyl peptide hydrolyzing' (beta1). Studies with protein substrates indicate a far more complicated, less strict cleavage preference. We reasoned that inhibitors of extended size would give insight into the extent of overlapping substrate specificity of the individual activities and subunits. RESULTS: A new class of proteasome inhibitors, considerably extended in comparison with the commonly used fluorescent substrates and peptide-based inhibitors, has been prepared. Application of the safety catch resin allowed the generation of the target compounds using a solid phase protocol. Evaluation of the new compounds revealed a set of highly potent proteasome inhibitors that target all individual active subunits with comparable affinity, unlike the other inhibitors described to date. Modification of the most active compound, adamantane-acetyl-(6-aminohexanoyl)(3)-(leucinyl)(3)-vinyl-(methyl)-sulfone (AdaAhx(3)L(3)VS), itself capable of proteasome inhibition in living cells, afforded a new set of radio- and affinity labels. CONCLUSIONS: N-terminal extension of peptide vinyl sulfones has a profound influence on both their efficiency and selectivity as proteasome inhibitors. Such extensions greatly enhance inhibition and largely obliterate selectivity towards the individual catalytic activities. We conclude that for the interaction with larger substrates, there appears to be less discrimination of different substrate sequences for the catalytic activities than is normally assumed based on the use of small peptide-based substrates and inhibitors. The compounds described here are readily accessible synthetically, and are more potent inhibitors in living cells than their shorter peptide vinyl sulfone counterparts.  相似文献   

4.
The proteasome represents a validated drug target for the treatment of cancer, however, new types of inhibitors are required to tackle the development of resistant tumors. Current fluorescence‐based screening methods suffer from low sensitivity and are limited to the detection of ligands with conventional binding profiles. In response to these drawbacks, a crystallographic screening procedure for the discovery of agents with a novel mode of action was utilized. The optimized workflow was applied to the screening of a focused set of compounds, resulting in the discovery of a β1/β2‐specific sulfonamide derivative that noncovalently binds between subunits β1 and β2. The binding pocket displays significant differences in size and polarity between the immuno‐ and constitutive proteasome. The identified ligand thus provides valuable insights for the future structure‐based design of subtype‐specific proteasome inhibitors.  相似文献   

5.
The 20S proteasome is a large multicomponent protease complex. Relatively little is known about the mechanisms that control substrate specificity of its multiple active sites. We present here the crystal structure at 2.95 A resolution of a beta2-selective inhibitor (MB1) bound to the yeast 20S proteasome core particle (CP). This structure is compared to the structure of the CP bound to a general inhibitor (MB2) that covalently modified all three (beta1, beta2, beta5) catalytic subunits. These two inhibitors differ only in their P3 and P4 residues, thereby highlighting binding interactions distal to the active site threonine that control absolute substrate specificity of the complex. Comparisons of the CP-bound structures of MB1, MB2, and the natural products epoxomycin and TMC-95A also provide information regarding general binding modes for several classes of proteasome inhibitors.  相似文献   

6.
Elevated expression of the immunoproteasome has been associated with autoimmune diseases, inflammatory diseases, and various types of cancer. Selective inhibitors of the immunoproteasome are not only scarce, but also almost entirely restricted to peptide‐based compounds. Herein, we describe nonpeptidic reversible inhibitors that selectively block the chymotrypsin‐like (β5i) subunit of the human immunoproteasome in the low micromolar range. The most potent of the reversibly acting compounds were then converted into covalent, irreversible, nonpeptidic inhibitors that retained selectivity for the β5i subunit. In addition, these inhibitors discriminate between the immunoproteasome and the constitutive proteasome in cell‐based assays. Along with their lack of cytotoxicity, these data point to these nonpeptidic compounds being suitable for further investigation as β5i‐selective probes for possible application in noncancer diseases related to the immunoproteasome.  相似文献   

7.
The proteasome is an essential evolutionary conserved protease involved in many regulatory systems. Here, we describe the synthesis and characterization of the activity-based, fluorescent, and cell-permeable inhibitor Bodipy TMR-Ahx(3)L(3)VS (MV151), which specifically targets all active subunits of the proteasome and immunoproteasome in living cells, allowing for rapid and sensitive in-gel detection. The inhibition profile of a panel of commonly used proteasome inhibitors could be readily determined by MV151 labeling. Administration of MV151 to mice allowed for in vivo labeling of proteasomes, which correlated with inhibition of proteasomal degradation in the affected tissues. This probe can be used for many applications ranging from clinical profiling of proteasome activity, to biochemical analysis of subunit specificity of inhibitors, and to cell biological analysis of the proteasome function and dynamics in living cells.  相似文献   

8.
Syringolins, a class of natural products, potently and selectively inhibit the proteasome and show promising antitumour activity. To gain insight in the mode of action of syringolins, the ureido structural element present in syringolins is incorporated in oligopeptide vinyl sulfones and peptide epoxyketones yielding a focused library of potent new proteasome inhibitors. The distance of the ureido linkage with respect to the electrophilic trap strongly influences subunit selectivity within the proteasome. Compounds 13 and 15 are β5 selective and their potency exceeds that of syringolin A. In contrast, 5 may well be the most potent β1 selective compound active in living cells reported to date.  相似文献   

9.
The proteasome represents an invaluable target for the treatment of cancer and autoimmune disorders. The application of proteasome inhibitors, however, remains limited to blood cancers because their reactive headgroups and peptidic scaffolds convey unfavorable pharmacodynamic properties. Thus, the discovery of more drug‐like lead structures is indispensable. In this study, we present the first structure of the proteasome in complex with an indolo‐phakellin that exhibits a unique noncovalent binding mode unparalleled by all hitherto reported inhibitors. The natural product inspired pentacyclic alkaloid binds solely and specificially into the spacious S3 subpocket of the proteasomal β5 substrate binding channel, gaining major stabilization through halogen bonding with the protein backbone. The presented compound provides an ideal scaffold for the structure‐based design of subunit‐specific nonpeptidic proteasome‐blockers.  相似文献   

10.
BACKGROUND: The proteasome is a large multicatalytic protease complex (700 kDa) involved in a number of highly regulated processes. It has three major catalytic activities: a chymotrypsin-like activity, a trypsin-like activity and a post-glutamyl peptide hydrolyzing (PGPH) activity. To be useful as molecular probes, which could help dissect the cellular functions of the proteasome, inhibitors should be specific for the proteasome, active in vivo and selectively block only one of the three catalytic activities. To date, few inhibitors fulfill these requirements so we set out to make novel proteasome inhibitors that incorporate these characteristics. RESULTS: A panel of amino-terminally acetylated peptide alpha',beta'-epoxyketones with leucine in P1 and various aliphatic or aromatic amino acids in P2-P4 were prepared and evaluated. Most compounds selectively inhibited the chymotrypsin-like activity, while only weakly inhibiting the trypsin-like and PGPH activities. After optimization, one inhibitor, Ac-hFLFL-epoxide, was found to be more potent and selective for the inhibition of the chymotrypsin-like activity than several previously described inhibitors. This inhibitor also exhibited strong in vivo anti-inflammatory activity. CONCLUSIONS: Optimization of amino-terminally acetylated peptide alpha',beta'-epoxyketones furnished a potent proteasome inhibitor, Ac-hFLFL-epoxide, that has an excellent selectivity for the chymotrypsin-like activity. The inhibitor also proved to be a potent antiproliferative and anti-inflammatory agent. The strong in vivo and in vitro activities suggest that this class of proteasome inhibitors could be both molecular probes and therapeutic agents.  相似文献   

11.
The aim of this study is to verify if water-soluble porphyrins can be used as proteasome inhibitors. We have found that cationic porphyrins inhibit proteasome peptidase activities much more effectively than the corresponding anionic derivatives. The relevance of electrostatics in driving porphyin-proteasome interactions has been confirmed by the observation that the inhibitory efficiency of the cationic macrocycles decreases with the number of positive substituents. We have also investigated various metalloporphyrins, which differ due to the different propension of the central metal ion toward axial coordination. Our experimental results indicate that the naked cationic porphyrins are the most active in reversibly inhibiting the three main protease activities of the proteasome in the micromolar range. A spectroscopic characterization of porphyrin-proteasome interactions by UV-vis spectra parallels the results of inhibition assays: the higher the inhibitory effect the stronger the spectroscopic variations are. To interpret the action of porphyrins at a molecular level, we have performed calculations evidencing that cationic porphyrins may hinder the access to the canonical proteolytic site on the proteasome β5 subunit. In particular, an inspection of the top-scoring docking modes shows that the tetracationic porphyrin blocks the catalytic pocket, close to the N termini of the β5 proteasome subunit, more efficiently than its anionic counterpart. Proteasome inhibition activity of porphyrins unites their known anticancer properties making them suitable as a scaffold for the design of novel multitargeted molecules.  相似文献   

12.
《Chemistry & biology》1998,5(6):307-320
Background: The proteasome is a multicatalytic protease complex responsible for most cytosolic protein breakdown. The complex has several distinct proteolytic activities that are defined by the preference of each for the carboxyterminal (P1) amino acid residue. Although mutational studies in yeast have begun to define substrate specificities of individual catalytically active β subunits, little is known about the principles that govern substrate hydrolysis by the proteasome.Results: A series of tripeptide and tetrapeptide vinyl sulfones were used to study substrate binding and specificity of the proteasome. Removal of the aromatic amino-terminal cap of the potent tripeptide vinyl sulfone proteasome inhibitor 4-hydroxy-3-iodo-2-nitrophenyl-leucinyl-leucinyl-leucine vinyl sulfone resulted in the complete loss of binding and inhibition. Addition of a fourth amino acid (P4) to the tri-leucine core sequence fully restored inhibitory potency. 1251-labeled peptide vinyl sulfones were also used to examine inhibitor binding and to determine the correlation of subunit modification with inhibition of peptidase activity. Changing the amino acid in the P4 position resulted in dramatically different profiles of β-subunit modification.Conclusions: The P4 position, distal to the site of hydrolysis, is important in defining substrate processing by the proteasome. We observed direct correlations between subunit modification and inhibition of distinct proteolytic activities, allowing the assignment of activities to individual β subunits. The ability of tetrapeptides, but not tripeptide vinyl sulfones, to act as substrates for the proteasome suggests there could be a minimal length requirement for hydrolysis by the proteasome. These studies indicate that it is possible to generate inhibitors that are largely specific for individual β subunits of the proteasome by modulation of the P4 and carboxy-terminal vinyl sulfone moieties.  相似文献   

13.
BACKGROUND: The 20S proteasome is a multicatalytic protease complex that exhibits trypsin-like, chymotrypsin-like and post-glutamyl-peptide hydrolytic activities associated with the active sites of the beta2, beta5 and beta1 subunits, respectively. Modulation of these activities using inhibitors is essential for a better understanding of the proteasome's mechanism of action. Although there are highly selective inhibitors of the proteasome's chymotryptic activity, inhibitors of similar specificity have not yet been identified for the other activities. RESULTS: The X-ray structure of the yeast proteasome reveals that the sidechain of Cys118 of the beta3 subunit protrudes into the S3 subsite of the beta2 active site. The location of this residue was exploited for the rational design of bidentated inhibitors containing a maleinimide moiety at the P3 position for covalent linkage to the thiol group and a carboxy-terminal aldehyde group for hemiacetal formation with the Thr1 hydroxyl group of the active site. Structure-based modelling was used to determine the optimal spacing of the maleinimide group from the P2-P1 dipeptide aldehydes and the specificity of the S1 subsite was exploited to limit the inhibitory activity to the beta2 active site. X-ray crystallographic analysis of a yeast proteasome-inhibitor adduct confirmed the expected irreversible binding of the inhibitor to the P3 subsite. CONCLUSIONS: Maleoyl-beta-alanyl-valyl-arginal is a new type of inhibitor that is highly selective for the trypsin-like activity of eukaryotic proteasomes. Despite the reactivity of the maleinimide group towards thiols, and therefore the limited use of this inhibitor for in vitro studies, it might represent an interesting new biochemical tool.  相似文献   

14.
The proteasome is a multicatalytic protease complex with an unusual enzyme mechanism. It plays a central role in intracellular protein degradation and its important function in the regulation of the cell cycle makes it an interesting target for cancer therapy. First developed as reagents to elucidate the catalytic functions of the proteasome, several proteasome inhibitors are presently being tested in clinical trials. It appears that proteasome inhibitors of the classes peptidyl boronic acids, peptide epoxyketones, and β‐lactone‐γ‐lactams are particularly effective as anticancer agents.  相似文献   

15.
The development process for syringolin A analogues having improved proteasome inhibitory and antitumor activity is described. The strategy was to first establish a convergent synthesis of syringolin A using a rare intramolecular Ugi three‐component reaction in the last stage of the synthesis, so as to gain access toa set of structure‐based analogues. The inhibitory activity of chymotrypsin‐like activity of 20S proteasome was largely improved by targeting the S3 subsite of the β5 subunit. Cytotoxic activity was also improved by installing the membrane‐permeable substituent. These biological properties are comparable to those of bortezomib, a clinically used first‐line proteasome inhibitor.  相似文献   

16.
The concept of proteasome inhibition ranks among the latest achievements in the treatment of blood cancer and represents a promising strategy for modulating autoimmune diseases. In this study, we describe peptidic sulfonyl fluoride inhibitors that selectively block the catalytic β5 subunit of the immunoproteasome by inducing only marginal cytotoxic effects. Structural and mass spectrometric analyses revealed a novel reaction mechanism involving polarity inversion and irreversible crosslinking of the proteasomal active site. We thus identified the sulfonyl fluoride headgroup for the development and optimization of immunoproteasome selective compounds and their possible application in autoimmune disorders.  相似文献   

17.
The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron‐based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho‐carborane‐containing proteasome activators, hypoxia‐inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo‐dodecaborate as a water‐soluble moiety as well as a boron‐10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.  相似文献   

18.
Spiro beta-lactone-based proteasome inhibitors were discovered in the context of an asymmetric catalytic total synthesis of the natural product (+)-lactacystin (1). Lactone 4 was found to be a potent inhibitor of the 26S proteasome, while its C-6 epimer (5) displayed weak activity. Crystallographic studies of the two analogues covalently bound to the 20S proteasome permitted characterization of the important stabilizing interactions between each inhibitor and the proteasome's key catalytic N-terminal threonine residue. This structural data support the hypothesis that the discrepancy in potency between 4 and 5 may be due to differences in the hydrolytic stabilities of the resulting acyl enzyme complexes.  相似文献   

19.
It has been reported that organotins can inhibit the proteasomal chymotrypsin-like activity and induce cell death, but the interaction mode of organotins with proteasome has not been well defined. In this study, the IC50 of butyltins and phenyltins against the proteasomal activity and the nature of their inhibition were investigated. It was found that both mono- and di-organotins were weak, reversible inhibitors against the proteasome, while tributyltin and triphenyltin were potent, irreversible proteasome inhibitors. In silico studies using the reversible organotin proteasome inhibitors demonstrated a tight correlation of the estimated proteasomal inhibition constants (Ki) with the experimental IC50 values for proteasome inhibition. Furthermore, the Sn atom in TBT and TPT was found susceptible to form a coordinate bond with Thr 1 Oγ of the β5 subunit, which may account for the irreversible proteasome inhibition. The computational docking approach well predicted the inhibition nature of organotins toward the proteasomal chymotrypsin-like activity. This predictive model might aid in understanding the cytotoxic behavior of similar organometallic compounds.  相似文献   

20.
The 20S proteasome is a multicatalytic enzyme complex responsible for intracellular protein degradation in mammalian cells. Its antigen level or enzymatic activity in blood plasma are potentially useful markers for various malignant and nonmalignant diseases. We have developed a method for highly selective determination of the 20S proteasome using a Surface Plasmon Resonance Imaging (SPRI) technique. It is based on the highly selective interaction between the proteasome’s catalytic β5 subunit and immobilized inhibitors (the synthetic peptide PSI and epoxomicin). Inhibitor concentration and pH were optimized. Analytical responses, linear ranges, accuracy, precision and interferences were investigated. Biosensors based on either PSI and epoxomicin were found to be suitable for quantitative determination of the proteasome, with a precision of ±10% for each, and recoveries of 102% and 113%, respectively, and with little interference by albumin, trypsin, chymotrypsin, cathepsin B and papain. The proteasome also was determined in plasma of healthy subjects and of patients suffering from acute leukemia. Both biosensors gave comparable results (2860 ng·mL-1 on average for control, and 42300 ng·mL-1 on average for leukemia patients).
Figure
The synthetic peptide aldehyde Z-Ile-Glu(OBut)-Ala-Leu-H (PSI) and a microbial α’,β’ epoxyketone peptide epoxomicin was used to develop SPRI biosensor for the highly selective determination of the 20S proteasome concentration, and to evaluate the sensor applicability for the determination of 20S proteasome in human blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号