首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了制备聚合物/碳纳米管复合物,采用聚碳酸酯修饰了多壁碳纳米管。选择聚碳酸环氧丙烷己内酯,聚碳酸亚丁酯己内酯和聚碳酸亚丙酯马来酸酐酯三种聚碳酸酯修饰多壁碳纳米管,仅仅碳酸环氧丙烷己内酯修饰的碳纳米管复合物可分离得到可溶解性产物。分别采用红外光谱、扫描电镜和透射电镜表征了碳纳米管的表面修饰基团及形貌。热重分析表明,可溶解聚碳酸环氧丙烷己内酯修饰多壁碳纳米管相对接枝了较多的聚合物,因此促进了碳纳米管的溶解性,可能是因为聚碳酸环氧丙烷己内酯具有较多的端羟基提高了修饰接枝效果。可溶解聚碳酸环氧丙烷己内酯修饰多壁碳纳米管接枝了生物活性的部分,并具有一定溶解性,在药物载体领域将具有潜在用途。  相似文献   

2.
Poly(allyl glycidyl ether) and poly(allyl glycidyl ether‐co‐epichlorohydrin) were prepared by monomer‐activated anionic polymerization. Quantitative and controlled polymerization of allyl glycidyl ether (AGE) giving high molar mass polyether was achieved in a few hours at room temperature in toluene using tetraoctylammonium salt as initiator in presence of an excess of triisobutylaluminum ([i‐Bu3Al]/[NOct4Br] = 2?4). Following the same polymerization route, the copolymerization of AGE and epichlorohydrin yields in a living‐like manner gradient‐type copolymers with controlled molar masses. Chemical modification of the pendant allyl group into cyclic carbonate was then investigated and the corresponding polymers were used as precursors for the isocyanate‐free synthesis of polyurethane networks in presence of a diamine. Formation of crosslinked materials was followed and characterized by infrared and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Polymerization of epichlorohydrin (ECH) and copolymerization of propylene oxide–allyl glycidyl ether were studied by using a catalyst consisting of aluminum alkyl–strong phosphoric acid–Lewis base. This system showed high polymerization activity for alkylene oxides, and it was elucidated by x-ray diffraction analysis that the resultant ECH polymer was completely amorphous. The polymerization was presumed to be of the coordinated anionic type. The physical properties of the vulcanized polymers were studied.  相似文献   

4.
4‐Isopropenyl phenol ( 4‐IPP ) is a versatile dual functional intermediate that can be prepared readily from bisphenol‐A ( BPA ). Through etherification with epichlorohydrin to the phenolic group of 4‐IPP , it can be converted into 4‐isopropenyl phenyl glycidyl ether ( IPGE ). On further reaction with carbon dioxide in the presence of tetra‐n‐butyl ammonium bromide ( TBAB ) as the catalyst, IPGE was transformed into 4‐isopropenylphenoxy propylene carbonate ( IPPC ) in 90% yield. Cationic polymerization of IPPC with strong acid such as trifluoromethanesulfonic acid or boron trifluoride diethyl etherate as the catalyst at ?40 °C gave a linear poly(isopropenylphenoxy propylene carbonate), poly( IPPC ), with multicyclic carbonate groups substituted uniformly at the side‐chains of the polymer. The cyclic carbonate groups of poly( IPPC ) were further reacted with different aliphatic amines and diamines resulting in formation of polymers with hydroxy‐polyurethane on side‐chains. Syntheses, characterizations of poly( IPPC ) and its conversion into hydroxy‐polyurethane crosslinked polymers were presented. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 802–808  相似文献   

5.
The construction of amphiphilic polycarbonates through epoxides/CO2 coupling is a challenging aim to provide more diverse CO2‐based functional materials. In this report, we demonstrate the facile preparation of diverse and functional nanoparticles derived from a CO2‐based triblock polycarbonate system. By the judicious use of water as chain‐transfer reagent in the propylene oxide/CO2 polymerization, poly(propylene carbonate (PPC) diols are successfully produced and serve as macroinitiators in the subsequent allyl glycidyl ether/CO2 coupling reaction. The resulting ABA triblock polycarbonate can be further functionalized with various thiols by radical mediated thiol–ene click chemistry, followed by self‐assembly in deionized water to construct a versatile and functional nanostructure system. This class of amphiphilic polycarbonates could embody a powerful platform for biomedical applications.  相似文献   

6.
通过1,2,4-偏苯三甲酸酐(TA)和环氧丙烷丁基醚(BGE)合成超支化碱溶性聚酯,利用合成聚合物分子外围的羧基与烯丙基缩水甘油醚(AGE)反应,在超支化聚合物分子外围引入反应性烯丙基醚.研究了树脂组成对感光性和碱溶性的影响;结果表明:调整反应物料配比,可以获得较好的碱溶性和光固化性能,其树脂的反差γ可达到3.92.  相似文献   

7.
The lower critical solution temperature (LCST) behavior of novel poly(ethylene glycol) (PEG)‐based copolymers bearing multiple functional groups, obtained by anionic ring‐opening (co)polymerization (AROP), has been investigated. Variable comonomer ratios of ethylene oxide (EO) and the corresponding oxiranes isopropylidene glyceryl glycidyl ether (IGG), ethoxyl vinyl glycidyl ether (EVGE), allyl glycidyl ether (AGE), or N,N‐dibenzyl amino glycidyl (DBAG), particularly designed to implement functional groups at the PEG backbone, were found to influence the LCST behavior. Sharp transitions from translucent to opaque solutions, comparable to other well‐established stimuli‐responsive polymers, were observed at temperatures ranging from 9 to 82 °C. The influence of the side group hydrophobicity could be quantified by the comparison of the different copolymer systems observed.  相似文献   

8.
A well‐defined triblock terpolymer, poly(ethylene glycol)‐block‐poly(allyl glycidyl ether)‐block‐poly(tert‐butyl glycidyl ether) (PEG‐b‐PAGE‐b‐Pt‐BGE), with a narrow molar mass distribution has been synthesized by sequential living anionic ring‐opening polymerization. Afterward, the PAGE block was modified via thiol‐ene chemistry and different sugar moieties or cysteine as a model compound for peptides could be covalently attached to the polymer backbone. The solution self‐assembly of the obtained bis‐hydrophilic triblock terpolymers in aqueous media has been studied in detail by turbidimetry, dynamic light scattering, and transmission electron microscopy (TEM and cryo‐TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

10.
The ambifunctional monomer, 1-propenyl glycidyl ether, was prepared from allyl glycidyl ether, by a ruthenium-catalyzed isomerization reaction in high yield. 1-Propenyl glycidyl ether undergoes facile photoinduced cationic polymerization to yield a crosslinked polymer. The structure of this polymer was studied using 1H- and, 13C-NMR spectroscopies and employing well-characterized related polymers as models. The model polymers were prepared by the cationic polymerization of allyl glycidyl ether with BF3OEt2 followed by isomerization of the pendant allyl groups by a ruthenium catalyst. Subsequently, the resulting polyether-bearing pendant 1-propenyl ether groups was subjected to a diaryliodonium salt-photoinitiated polymerization. A comparison of the spectra of the polymers indicated the presence of cyclic acetal units in the polymer backbone. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Laser-initiated polymerization of cyclohexene oxide in the presence of maleic anhydride was investigated. The influences of solvents laser irradiation time and the monomer feed ratio on the polymer yield and composition were evaluated. The rate of polymerization increased with an increase in the molar concentration of maleic anhydride in the monomer feed. Short irradiation times of 1–3 min duration gave very high yield of epoxy polymer (>80% conversion). Infrared spectral studies of the polymer product indicated the formation of polyether linkage at lower levels of conversion and an adduct of polyether and maleic anhydride at higher polymer conversions. The quantitative chemical analyses results also showed similar results. The results indicated that the polymerization was initiated by the excited charge transfer complex between the electron donor, cyclohexane oxide, and the electron acceptor–maleic anhydride. In the initial stages of polymerization, cyclohexene oxide undergoes a cationic polymerization in the presence of the radical anion of maleic anhydride. Laser-initiated polymerization of cyclohexene oxide/maleic anhydride is several hundred times more efficient than UV-initiated polymerization, as measured by the energy absorbed by the polymer system.  相似文献   

12.
We report a new kind of coating using UV waterborne technique with a biobased poly(amino acid) resin. Firstly we performed the thermal polycondensation of l ‐lysine during 15 h at 150 °C to synthesize water‐soluble oligomers of poly‐l ‐lysine (PLL) with 5–6 monomer units. These oligomers were then transformed in mild conditions to give photocurable water‐soluble resins. We grafted on the poly‐l ‐lysine backbone, allyl and maleamic acid functional groups, with a grafting rate close to 65% thanks to allyl glycidyl ether and maleic anhydride respectively. The influence of the reaction time and the reagents ratio on the grafting rate was investigated. Hence, the donor/acceptor photopolymerization of the mixture of allyl ether‐poly‐l ‐lysine (PLL‐g‐AE) with maleamic acid‐poly‐l ‐lysine (PLL‐g‐MA) in aqueous solution gave yellow transparent films. The degree of conversion and other kinetic parameters have been studied and detailed. This work contributes to the development of materials based on renewable resources and cleaner processes. It opens a new pathway to both fundamental and applied‐driven research. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 955–963  相似文献   

13.
Functional aliphatic polycarbonates with pendant allyl groups were synthesised by copolymerization of carbon dioxide and allyl glycidyl ether (AGE) in the presence of a catalyst system based on ZnEt2 and pyrogallol at a molar ratio 2 : 1. The functionality of some polycarbonates was reduced by replacing a part of allyl ether with saturated glycidyl ether, i.e., butyl glycidyl ether (BGE) or isopropyl glycidyl ether (IGE). Polycarbonates obtained by the copolymerization of AGE and CO2 or by the terpolymerization of AGE, IGE and CO2 were oxidized with m‐chloroperbenzoic acid to their respective poly(epoxycarbonate)s. The influence of the AGE/ΣGE ratio in the polycarbonates, the polymer concentration in the reaction solution and the duration of the reaction on the conversion of allyl groups into glycidyl ones was examined. A tendency to gelation of the initial and oxidized polycarbonates during storage was observed. The initial polycarbonates and their oxidized forms were degraded in aqueous buffer of pH = 7.4 at 37°C. The course of hydrolytic degradation was monitored by the determination of mass loss.  相似文献   

14.
The Na2CO3‐promoted polymerization of 1,3‐dioxolan‐2‐one (I) to afford poly(ethylene glycol) III was reinvestigated. The reaction appeared to involve a nucleophilic attack against the carbonyl and methylene groups of I to afford poly(carbonate) II with poly(ethylene glycol) linkages and ethylene oxide IV as a side product (10–22%). As the reaction progressed, poly(carbonate) II decreased and poly(ethylene glycol) III increased. Under some conditions, poly(ethylene glycol)s V and VI with vinyl ether terminal groups were formed unexpectedly. The formation of unsaturated products during the polymerization of I/EO (ethylene oxide) has not been reported in the literature. We believe that vinyl ethers were formed from the degradation of poly(carbonate)s and were accompanied by a reduction in molecular weight. The structures of vinyl ethers V and VI were confirmed by hydrogenation of the double bond into the ethyl ether group in VII and VIII, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 152–160, 2000  相似文献   

15.
A crosslinking strategy was used to improve the thermal and mechanical performance of poly(propylene carbonate) (PPC): PPC bearing a small moiety of pendant C?C groups was synthesized by the terpolymerization of allyl glycidyl ether (AGE), propylene oxide (PO), and carbon dioxide (CO2). Almost no yield loss was found in comparison with that of the PO and CO2 copolymer when the concentration of AGE units in the terpolymer was less than 5 mol %. Once subjected to UV‐radiation crosslinking, the crosslinked PPC film showed an elastic modulus 1 order of magnitude higher than that of the uncrosslinked one. Moreover, crosslinked PPC showed hot‐set elongation at 65 °C of 17.2% and permanent deformation approaching 0, whereas they were 35.3 and 17.2% for uncrosslinked PPC, respectively. Therefore, the PPC application window was enlarged to a higher temperature zone by the crosslinking strategy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5329–5336, 2006  相似文献   

16.
The isomerization polymerization of three alkyl glycidyl carbonates (4), i.e., glycidyl methyl carbonate (4a), ethyl glycidyl carbonate (4b), and glycidyl propyl carbonate (4c), catalyzed by methylaluminum bis(2,6‐di‐t‐butyl‐4‐methylphenoxide) (3) to afford novel poly(orthocarbonate)s, poly[(2‐alkoxy‐1,3‐dioxolane‐2,4‐diyl)oxymethylene]s (5a–c), is described. The polymerization proceeded best at around room temperature and gave 5 having several thousands of Mn. As the alkoxy chain of 4 was lengthened, the polymer yield decreased, while the polymer molecular weight increased. The yields of 5b and 5c, however, were improved by increasing the feed ratio of 3 to 4 from 0.04 to 0.10. The reactivity of 4 was discussed in relation to that of glycidyl alkanoates (1). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 445–453, 1999 (See graphics.)  相似文献   

17.
The boron trifluoride tetrahydrofuranate-catalyzed cationic polymerization of allyl glycidyl ether in carbon tetrachloride proceeds via an oxirane cycle to form initially cyclic products and, at later stages, high-molecular-mass products. In the case of 1,2-dimethoxyethane, the polymerization of allyl glycidyl ether occurs via insertion of the monomer into a dissociated bond of a Lewis acid-dimethoxyethane complex and yields a linear polymer with end methoxy groups.  相似文献   

18.
Summary Thermal and dynamic mechanical properties of carbon dioxide and propylene oxide alternative copolymer, poly(propylene carbonate) (PPC), and the end-capped PPC with maleic anhydride were investigated by means of TG and DMA. A master curve of the storage modulus vs. frequency can be deduced from the isochronal curves. Physical parameters of both plain and MA end-capped PPC were discussed. The results showed that for maleic anhydride (MA) end-capping PPC, an improvement of its thermal stability and mechanical properties accompanied with some modifications of the viscoelastic behavior were obtained.  相似文献   

19.
原子转移自由基聚合制备聚(丙二醇-g-苯乙烯)   总被引:8,自引:0,他引:8  
以氯甲基化苯氧基聚丙二醇 (CMPOPPG)为大分子引发剂 ,由CuCl/bpy催化的苯乙烯原子转移自由基聚合反应合成了聚 (丙二醇 g 苯乙烯 ) .CMPOPPG经环氧丙烷 (PO)与缩水甘油苯基醚 (GPE)的开环聚合和氯甲基化反应制得 .接枝聚合反应具有可控性 .用1H NMR和微库仑分析法对接枝共聚物进行了表征 .结果表明 ,支链分子量可控 ,接枝率可达 8.6.  相似文献   

20.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号