共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrigendum: Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts 下载免费PDF全文
Dr. Reiner Sebastian Sprick Dr. Baltasar Bonillo Rob Clowes Pierre Guiglion Nick J. Brownbill Dr. Benjamin J. Slater Dr. Frédéric Blanc Dr. Martijn A. Zwijnenburg Prof. Dave J. Adams Prof. Andrew I. Cooper 《Angewandte Chemie (International ed. in English)》2018,57(10):2520-2520
2.
3.
4.
Seeking visible‐light‐active photocatalysts for efficient solar‐energy conversion has become an intensifying endeavor worldwide. In this concept paper, general requirements for finding new visible‐light‐active photocatalysts are briefly introduced, and recent progress in exploring elemental photocatalysts for clean‐energy generation and environmental remediation are reviewed. Finally, opportunities and challenges facing elemental photocatalysts are discussed. 相似文献
5.
Dr. Guigang Zhang Zhi‐An Lan Prof. Xinchen Wang 《Angewandte Chemie (International ed. in English)》2016,55(51):15712-15727
Conjugated polymers, comprising fully π‐conjugated systems, present a new generation of heterogeneous photocatalysts for solar‐energy utilization. They have three key features, namely robustness, nontoxicity, and visible‐light activity, for photocatalytic processes, thus making them appealing candidates for scale‐up. Presented in this Minireview, is a brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, including linear polymers, planarized polymers, triazine/heptazine polymers, and other related organic conjugated semiconductors, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties. Some future trends and prospects for organic conjugated photocatalysts in artificial photosynthesis, by water splitting, are also envisaged. 相似文献
6.
Alloyed ZnS–CuInS2 Semiconductor Nanorods and Their Nanoscale Heterostructures for Visible‐Light‐Driven Photocatalytic Hydrogen Generation 下载免费PDF全文
Dr. Chen Ye Dr. Michelle D. Regulacio Dr. Suo Hon Lim Shuang Li Dr. Qing‐Hua Xu Dr. Ming‐Yong Han 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(26):9514-9519
A promising photocatalytic system in the form of heterostructured nanocrystals (HNCs) is presented wherein alloyed ZnS–CuInS2 (ZCIS) semiconductor nanorods are decorated with Pt and Pd4S nanoparticles. This is apparently the first report on the colloidal preparation and photocatalytic behavior of ZCIS–Pt and ZCIS–Pd4S nanoscale heterostructures. Incorporation of Pt and Pd4S cocatalysts leads to considerable enhancement of the photocatalytic activity of ZCIS for visible‐light‐driven hydrogen production. 相似文献
7.
8.
Dr. Lei Wang Ricardo Fernández‐Terán Lei Zhang Dr. Daniel L. A. Fernandes Lei Tian Dr. Hong Chen Prof. Dr. Haining Tian 《Angewandte Chemie (International ed. in English)》2016,55(40):12306-12310
For the first time, organic semiconducting polymer dots (Pdots) based on poly[(9,9′‐dioctylfluorenyl‐2,7‐diyl)‐co‐(1,4‐benzo‐{2,1′,3} thiadiazole)] (PFBT) and polystyrene grafting with carboxyl‐group‐functionalized ethylene oxide (PS‐PEG‐COOH) are introduced as a photocatalyst towards visible‐light‐driven hydrogen generation in a completely organic solvent‐free system. With these organic Pdots as the photocatalyst, an impressive initial rate constant of 8.3 mmol h?1 g?1 was obtained for visible‐light‐driven hydrogen production, which is 5‐orders of magnitude higher than that of pristine PFBT polymer under the same catalytic conditions. Detailed kinetics studies suggest that the productive electron transfer quench of the excited state of Pdots by an electron donor is about 40 %. More importantly, we also found that the Pdots can tolerate oxygen during catalysis, which is crucial for further application of this material for light‐driven water splitting. 相似文献
9.
Prof. XiaoJin Wang Prof. Huan Pang Dr. Shanshan Zhao Dr. Weifang Shao Dr. Bo Yan Dr. Xinran Li Prof. Sujuan Li Prof. Jing Chen Prof. Weimin Du 《Chemphyschem》2013,14(11):2518-2524
Fe4(OH)3(PO4)3 microcrystals are successfully synthesized by a simple hydrothermal method. Due to a possible self‐etching mechanism, different morphologies of Fe4(OH)3(PO4)3 microcrystals are obtained. Several reactions with different temperatures and times are performed to confirm the supposed self‐etching mechanism. Moreover, as a result of their different micro/nanostructures, these microcrystals present different photocatalytic activities for visible‐light‐driven photodegragadation of methylene blue. 相似文献
10.
Efficient Visible‐Light‐Driven Z‐Scheme Overall Water Splitting Using a MgTa2O6−xNy /TaON Heterostructure Photocatalyst for H2 Evolution 下载免费PDF全文
Shanshan Chen Yu Qi Dr. Takashi Hisatomi Qian Ding Tomohiro Asai Zheng Li Dr. Su Su Khine Ma Prof. Fuxiang Zhang Prof. Kazunari Domen Prof. Can Li 《Angewandte Chemie (International ed. in English)》2015,54(29):8498-8501
An (oxy)nitride‐based heterostructure for powdered Z‐scheme overall water splitting is presented. Compared with the single MgTa2O6?xNy or TaON photocatalyst, a MgTa2O6?xNy /TaON heterostructure fabricated by a simple one‐pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt‐loaded MgTa2O6?xNy /TaON as a H2‐evolving photocatalyst, a Z‐scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8 % at 420 nm was constructed (PtOx‐WO3 and IO3?/I? pairs were used as an O2‐evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt‐TaON or Pt‐MgTa2O6?xNy as a H2‐evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z‐scheme overall water splitting systems ever reported. 相似文献
11.
Near‐Infrared Light‐Driven Hydrogen Evolution from Water Using a Polypyridyl Triruthenium Photosensitizer 下载免费PDF全文
Yutaro Tsuji Keiya Yamamoto Dr. Kosei Yamauchi Prof. Ken Sakai 《Angewandte Chemie (International ed. in English)》2018,57(1):208-212
In order to realize artificial photosynthetic devices for splitting water to H2 and O2 (2 H2O+hν→2 H2+O2), it is desirable to use a wider wavelength range of light that extends to a lower energy region of the solar spectrum. Here we report a triruthenium photosensitizer [Ru3(dmbpy)6(μ‐HAT)]6+ (dmbpy=4,4′‐dimethyl‐2,2′‐bipyridine, HAT=1,4,5,8,9,12‐hexaazatriphenylene), which absorbs near‐infrared light up to 800 nm based on its metal‐to‐ligand charge transfer (1MLCT) transition. Importantly, [Ru3(dmbpy)6(μ‐HAT)]6+ is found to be the first example of a photosensitizer which can drive H2 evolution under the illumination of near‐infrared light above 700 nm. The electrochemical and photochemical studies reveal that the reductive quenching within the ion‐pair adducts of [Ru3(dmbpy)6(μ‐HAT)]6+ and ascorbate anions affords a singly reduced form of [Ru3(dmbpy)6(μ‐HAT)]6+, which is used as a reducing equivalent in the subsequent water reduction process. 相似文献
12.
Kamalakannan Kailasam Johannes Schmidt Hakan Bildirir Guigang Zhang Siegfried Blechert Xinchen Wang Arne Thomas 《Macromolecular rapid communications》2013,34(12):1008-1013
Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine‐bridged heptazine moieties and showed interesting performance as a metal‐free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine‐based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination.
13.
14.
以还原型谷胱甘肽(GSH)作为硫源和结构导向剂水热法“一壶”制备系列硫化镉(CdS)光催化材料,采用透射电镜(HRTEM)、场发射扫描电镜(FESEM)、X射线衍射仪(XRD)、紫外可见漫反射(UV-Vis)、荧光光谱(PL)、比表面分析仪(BET)和光解水产氢反应等对催化材料的微观表面结构、光吸收性能以及光催化性能进行了研究。结果表明:通过调节反应物的nCd/nS比和水热温度等参数可控的制备出分散性好的CdS实心纳米球(s-CdS)、空心纳米球(h-CdS)以及纳米棒(r-CdS)等不同微观形貌的光催化材料。对比研究了不同形貌光催化剂的光解水产氢的宏观性能,发现s-CdS产氢活性最高,h-Cd次之,r-CdS最差。这一结果可归结于构成实心球表面亚微晶的粒径相比其它形貌的小,导致电子-空穴对快速迁移至表面并与溶液反应,抑制体相复合,导致生成的氢气量大大的提高。 相似文献
15.
Dr. Xi‐Yan Dong Mei Zhang Ru‐Bo Pei Qian Wang Dong‐Hui Wei Prof. Shuang‐Quan Zang Prof. Yao‐Ting Fan Prof. Thomas C. W. Mak 《Angewandte Chemie (International ed. in English)》2016,55(6):2073-2077
A crystalline coordination polymer (CP) photocatalyst (Cu‐RSH) which combines redox‐active copper centers with photoactive rhodamine‐derived ligands remains stable in acid and basic solutions from pH 2 to 14, and efficiently catalyzes dihydrogen evolution at a maximum rate of 7.88 mmol g?1 h?1 in the absence of a mediator and a co‐catalyst. Cyclic voltammetry, control experiments, and DFT calculations established that copper nodes with open coordination sites and favorable redox potentials, aided by spatially ordered stacking of rhodamine‐based linkers, account for the high catalytic performance of Cu‐RSH. Emission quenching, time‐resolved fluorescence decay, and transient photocurrent experiments disclosed the charge separation and transfer process in the catalytic system. The present study demonstrates the potential of crystalline copper CPs for the practical utilization of light. 相似文献
16.
An Efficient,Visible‐Light‐Driven,Hydrogen Evolution Catalyst NiS/ZnxCd1−xS Nanocrystal Derived from a Metal–Organic Framework 下载免费PDF全文
Dr. Xiuxia Zhao Jianrui Feng Jing Liu Prof. Wei Shi Prof. Guangming Yang Prof. Gui‐Chang Wang Prof. Peng Cheng 《Angewandte Chemie (International ed. in English)》2018,57(31):9790-9794
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1?xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g?1 h?1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER. 相似文献
17.
以还原型谷胱甘肽(GSH)作为硫源和结构导向剂水热法“一壶”制备系列硫化镉(CdS)光催化材料,采用透射电镜(HRTEM)、场发射扫描电镜(FESEM)、X射线衍射仪(XRD)、紫外可见漫反射(UV-Vis)、荧光光谱(PL)、比表面分析仪(BET)和光解水产氢反应等对催化材料的微观表面结构、光吸收性能以及光催化性能进行了研究。结果表明:通过调节反应物的nCd/nS比和水热温度等参数可控的制备出分散性好的CdS实心纳米球(s-CdS)、空心纳米球(h-CdS)以及纳米棒(r-CdS)等不同微观形貌的光催化材料。对比研究了不同形貌光催化剂的光解水产氢的宏观性能,发现s-CdS产氢活性最高,h-Cd次之,r-CdS最差。这一结果可归结于构成实心球表面亚微晶的粒径相比其它形貌的小,导致电子-空穴对快速迁移至表面并与溶液反应,抑制体相复合,导致生成的氢气量大大的提高。 相似文献
18.
An Efficient RuII–RhIII–RuII Polypyridyl Photocatalyst for Visible‐Light‐Driven Hydrogen Production in Aqueous Solution 下载免费PDF全文
Dr. Thibaut Stoll Dr. Marcello Gennari Dr. Jérôme Fortage Dr. Carmen E. Castillo Dr. Mateusz Rebarz Dr. Michel Sliwa Dr. Olivier Poizat Dr. Fabrice Odobel Dr. Alain Deronzier Dr. Marie‐Noëlle Collomb 《Angewandte Chemie (International ed. in English)》2014,53(6):1654-1658
The development of multicomponent molecular systems for the photocatalytic reduction of water to hydrogen has experienced considerable growth since the end of the 1970s. Recently, with the aim of improving the efficiency of the catalysis, single‐component photocatalysts have been developed in which the photosensitizer is chemically coupled to the hydrogen‐evolving catalyst in the same molecule through a bridging ligand. Until now, none of these photocatalysts has operated efficiently in pure aqueous solution: a highly desirable medium for energy‐conversion applications. Herein, we introduce a new ruthenium–rhodium polypyridyl complex as the first efficient homogeneous photocatalyst for H2 production in water with turnover numbers of several hundred. This study also demonstrates unambiguously that the catalytic performance of such systems linked through a nonconjugated bridge is significantly improved as compared to that of a mixture of the separate components. 相似文献
19.
Narrow‐Bandgap Chalcogenoviologens for Electrochromism and Visible‐Light‐Driven Hydrogen Evolution 下载免费PDF全文
Guoping Li Letian Xu Weidong Zhang Kun Zhou Yousong Ding Dr. Fenglin Liu Prof. Dr. Xiaoming He Prof. Dr. Gang He 《Angewandte Chemie (International ed. in English)》2018,57(18):4897-4901
A series of electron‐accepting chalcogen‐bridged viologens with narrow HOMO–LUMO bandgaps and low LUMO levels is reported. The optoelectronic properties of chalcogenoviologens can be readily tuned through heavy atom substitution (S, Se and Te). Herein, in situ electrochemical spectroscopy was performed on the proof‐of‐concept electrochromic devices (ECD). E‐BnV2+ (E=Se, Te; BnV2+=benzyl viologen) was used for the visible‐light‐driven hydrogen evolution due to the strong visible‐light absorption. Remarkably, E‐BnV2+ was not only used as a photosensitizer, but also as an electron mediator, providing a new strategy to explore photocatalysts. The higher apparent quantum yield of Se‐BnV2+ could be interpreted in terms of different energy levels, faster electron‐transfer rates and faster formation of radical species. 相似文献
20.
Visible‐Light‐Driven Hydrogen Production and Polymerization using Triarylboron‐Functionalized Iridium(III) Complexes 下载免费PDF全文
Ling‐Xia Yang Wan‐Fa Yang Yong‐Jun Yuan Yi‐Bing Su Miao‐Miao Zhou Xiao‐Le Liu Guang‐Hui Chen Xin Chen Zhen‐Tao Yu Zhi‐Gang Zou 《化学:亚洲杂志》2018,13(13):1699-1709
The development of novel iridium(III) complexes has continued as an important area of research owing to their highly tunable photophysical properties and versatile applications. In this report, three heteroleptic dimesitylboron‐containing iridium(III) complexes, [Ir(p‐B‐ppy)2(N^N)]+ {p‐B‐ppy=2‐(4‐dimesitylborylphenyl)pyridine; N^N=dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 1 ), dipyrido[3,2‐d:2′,3′‐f]quinoxaline (dpq) ( 2 ), and 1,10‐phenanthroline (phen) ( 3 )}, were prepared and fully characterized electrochemically, photophysically, and computationally. Altering the conjugated length of the N^N ligands allowed us to tailor the photophysical properties of these complexes, especially their luminescence wavelength, which could be adjusted from λ=583 to 631 nm in CH2Cl2. All three complexes were evaluated as visible‐light‐absorbing sensitizers for the photogeneration of hydrogen from water and as photocatalysts for the photopolymerization of methyl methacrylate. The results showed that all of them were active in both photochemical reactions. High activity for the photosensitizer (over 1158 turnover numbers with 1 ) was observed, and the system generated hydrogen even after 20 h. Additionally, poly(methyl methacrylate) with a relatively narrow molecular‐weight distribution was obtained if an initiator (i.e., ethyl α‐bromophenylacetate) was used. The living character of the photoinduced polymerization was confirmed on the basis of successful chain‐extension experiments. 相似文献