首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
In the title mixed‐ligand metal–organic polymeric complex, {[Co(NCS)2(C8H12N6)2]·2H2O}n, the asymmetric unit contains a divalent CoII cation, which sits on an inversion centre, two halves of two crystallographically distinct and centrosymmetric 1,4‐bis(1,2,4‐triazol‐1‐yl)butane (BTB) ligands, one N‐bound thiocyanate ligand and one solvent water molecule. The CoII atom possesses a distorted {CoN6} octahedral geometry, with the equatorial positions taken up by triazole N atoms from four different BTB ligands. The axial positions are filled by thiocyanate N atoms. In the crystal, each CoII atom is linked covalently to four others through the distal donors of the tethering BTB ligands, forming a neutral (4,4)‐topology two‐dimensional rhomboid grid layer motif, which is coincident with the (11) crystal planes. Magnetic investigations show that weak antiferromagnetic coupling exists between CoII atoms in the complex.  相似文献   

2.
A novel neutral polymer, {[Co2(C7H3NO4)2(H2O)4]·2H2O}n, was hydrothermally synthesized using pyridine‐2,5‐dicarboxylate (2,5‐PDC2−) as the organic linker. It features a two‐dimensional layer structure constructed from one‐dimensional {[Co(2,5‐PDC)2]2−}n chains interlinked by [Co(H2O)4]+ units. The two CoII cations occupy special positions, sitting on inversion centres. Each 2,5‐PDC2− anion chelates to one CoII cation via the pyridine N atom and an O atom of the adjacent carboxylate group, and links to two other CoII cations in a bridging mode via the O atoms of the other carboxylate group. In this way, the 2,5‐PDC2− ligand connects three neighbouring CoII centres to form a two‐dimensional network. The two‐dimensional undulating layers are linked by extensive hydrogen bonds to form a three‐dimensional supramolecular structure, with the uncoordinated solvent molecules occupying the interlamellar region.  相似文献   

3.
Reaction of Co(II) with the nitrogen‐rich ligand N,N‐bis(1H‐tetrazole‐5‐yl)‐amine (H2bta) leads to a mixed‐valence, 3D, porous, metal–organic framework (MOF)‐based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n?(22 H2O)n ( 1 ). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm?3, [Co9(bta)10(Hbta)2(H2O)10]n ( 2 ). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1 , reflecting guest‐dependent energy and sensitivity of 3D, MOF‐based, energetic materials. Less‐sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2 .  相似文献   

4.
The title compound, {[Co(C8H7NO2)2(H2O)2](NO3)2}n, is the first d‐metal ion complex involving bidentate bridging of a β‐dialdehyde group. The Co2+ ion is situated on an inversion centre and adopts an octahedral coordination with four equatorial aldehyde O atoms [Co—O = 2.0910 (14) and 2.1083 (14) Å] and two axial aqua ligands [Co—O = 2.0631 (13) Å]. The title compound has a two‐dimensional square‐grid framework structure supported by propane‐1,3‐dionate O:O′‐bridges between the metal ions. The organic ligand itself possesses a zwitterionic structure, involving conjugated anionic propane‐1,3‐dionate and cationic pyridinium fragments. Hydrogen bonding between coordinated water molecules, the pyridinium NH group and the nitrate anions [O...O = 2.749 (2) and 2.766 (3) Å, and N...O = 2.864 (3) Å] is essential for the crystal packing.  相似文献   

5.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

6.
Two nitrilotriacetate cobalt complexes {[CoK2(NTA)(Hmta)(H2O)3]NO3}n ( 1 ) and [{Co(4,4′‐bpy)2(H2O)4}{Co2(NTA)2(4,4′‐bpy)(H2O)2}] ( 2 ) (NTA = nitrilotriacetate anion, Hmta = hexamethylenetetramine and 4,4′‐bpy = 4,4′‐bipyridine) were prepared and characterized by IR, elemental analysis and single crystal X‐ray diffraction study. The influence of the neutral ancillary ligands on the formation of the complexes with different structures in the Co‐NTA system was discussed. The coordination of NTA and Hmta to Co2+ ions only resulted in the formation of mononuclear [Co(NTA)(Hmta)]? ions which are further connected by K+ ions and water molecules to form a three‐dimensional network. The use of 4,4′‐bpy as ancillary ligand in 2 led to the formation of separate mononuclear [Co(4,4′‐bpy)2(H2O)4]2+ and dinuclear [Co2(NTA)2(4,4′‐bpy)(H2O)2]2? which are further connected by hydrogen bonds to form a supramolecular three‐dimensional network. In these cases it seems to suggest that the addition of neutral ancillary ligand into the Co‐NTA system leads to the formation of lower dimensional structures when the contribution of alkali ions to the structural dimensionality is neglected.  相似文献   

7.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

8.
Three cobalt(II)‐containing tungstophosphate compounds, Na8Li8Co5[Co5.5(H2O)19P8W48.5O184] ? 60 H2O ( 1 ), K2Na4Li11Co5[Co7(H2O)28P8W48O184]Cl ? 59 H2O ( 2 ), and K2Na4LiCo11[Co8(H2O)32P8W48O184](CH3COO)4Cl ? 47 H2O ( 3 ), have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis, elemental analyses, and magnetic measurements. The pH value impacts the formation of distinct cobalt‐linked frameworks. The cyclic cavity of the polyanion accommodates 5.5, 7, and 8 cobalt ions in 1 , 2 , and 3 , respectively. In compounds 1 and 2 , each {Co5.5P8W48} and {Co7P8W48} fragment links to four others through multiple {Co‐O‐W} coordination bonds to generate a two‐dimensional network. Compound 3 can be considered as a 3D network based on the {Co‐O‐W} coordination bonds and the {Co3(CH3COO)2(H2O)10} linkers between the {P8W48} fragments. Interestingly, acetate ligands have been employed to form the {Co3(CH3COO)2(H2O)10} unit, thereby inducing the construction of a 12‐connected framework. To the best of our knowledge, compound 3 contains the largest‐ever number of cobalt ions in a {P8W48}‐based polyoxometalate when counterions are taken into account and the {P8W48} unit shows the highest number of connections thanks to the carboxyl bridges. The UV/Vis diffuse reflectance spectra of these powder samples indicate that the corresponding well‐defined optical absorption associated with Eg can be assessed at 2.58, 2.48, and 2.73 eV and reveal the presence of an optical band gap. The photocatalytic H2 evolution activities of these {P8W48}‐based compounds are evaluated.  相似文献   

9.
The structure of the title complex, poly[dicaesium(I) hexaaquacobalt(II) [octaaquatetra‐μ‐citrato‐hexacobalt(II)] dodecahydrate], {Cs2[Co(H2O)6][Co6(C6H4O7)4(H2O)8]·12H2O}n, at 100 (1) K is formed by layers of a square two‐dimensional polymer composed of CoII citrate cubanes bridged by magnetically active six‐coordinate CoII cations. The polymer has plane symmetry p4mm in the c‐axis projection. The cubanes reside on sites of crystallographic symmetry , while the bridging CoII centres lie on twofold axes. The basic polymeric unit has a charge of 4−, balanced by two Cs+ and a [Co(H2O)6]2+ (symmetry ) cation, which lie in channels between the polymeric layers. Unligated water molecules, of which there are 12 per cubane, enter into an extended intralayer and layer‐bridging hydrogen‐bond pattern, which can be described in detail even though not all of the H atoms of the water molecules were located.  相似文献   

10.
Solvothermal reaction of H4L (L=biphenyl‐3,3′,5,5′‐tetracarboxylate) and Bi(NO3)3 ? (H2O)5 in a mixture of DMF/MeCN/H2O in the presence of piperazine and nitric acid at 100 °C for 10 h affords the solvated metal–organic polymer [Bi2(L)1.5(H2O)2] ? (DMF)3.5 ? (H2O)3 (NOTT‐220‐solv). A single crystal X‐ray structure determination confirms that it crystallises in space group P2/c and has a neutral and non‐interpenetrated structure comprising binuclear {Bi2} centres bridged by tetracarboxylate ligands. NOTT‐220‐solv shows a 3,6‐connected network having a framework topology with a {4 ? 62}2{42 ? 65 ? 88}{62 ? 8} point symbol. The desolvated material NOTT‐220a shows exceptionally high adsorption uptakes for CH4 and CO2 on a volumetric basis at moderate pressures and temperatures with a CO2 uptake of 553 g L?1 (20 bar, 293 K) with a saturation uptake of 688 g L?1 (1 bar, 195 K). The corresponding CH4 uptake was measured as 165 V(STP)/V (20 bar, 293 K) and 189 V(STP/V) (35 bar, 293 K) with a maximum CH4 uptake for NOTT‐220a recorded at 20 bar and 195 K to be 287 V(STP)/V, while H2 uptake of NOTT‐220a at 20 bar, 77 K is 42 g L?1. These gas uptakes have been modelled by grand canonical Monte Carlo (GCMC) and density functional theory (DFT) calculations, which confirm the experimental data and give insights into the nature of the binding sites of CH4 and CO2 in this porous hybrid material.  相似文献   

11.
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S‐bearing phenol‐based ligand system, H3L (2,6‐bis‐[{2‐(2‐hydroxyethylthio)ethylimino}methyl]‐4‐methylphenol) formed [Co5] aggregates [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CCH3)2](ClO4)4?H2O ( 1 ) and [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CC2H5)2](ClO4)4?H2O ( 2 ). The magnetic studies revealed axial zero‐field splitting (ZFS) parameter, D/hc=?23.6 and ?24.3 cm?1, and E/D=0.03 and 0.00, respectively for 1 and 2 . Dynamic magnetic data confirmed the complexes as SIMs with Ueff/kB=30 K ( 1 ) and 33 K ( 2 ), and τ0=9.1×10?8 s ( 1 ), and 4.3×10?8 s ( 2 ). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff/kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII2(μ‐L)} units, display solvent‐dependent catechol oxidation behavior toward 3,5‐di‐tert‐butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.  相似文献   

12.
Five new divalent metal coordination polymers containing either 1,3‐adamantanedicarboxylate (adc) or 1,3‐adamantanediacetate (ada) and pillaring dipyridyl ligands were prepared and structurally characterized by single‐crystal X‐ray diffraction. Using the V‐shaped linker 4,4′‐dipyridylamine (dpa), three new phases were isolated. {[Zn2(ada)2(dpa)2] · 4.5H2O}n ( 1 ) shows a (4,4) grid topology with embedded octameric water clusters. {[Co(ada)(dpa)(H2O)] · H2O}n ( 2 ) also manifests a 2D dimensionality, but with an intriguing novel (4)(12)(4.125) looped topology. {[Cd(adc)(H2O)2] · H2O}n ( 3 ) did not incorporate dpa ligands during self‐assembly, but exhibits an uncommon 3‐connected 83 etb network topology. [Co(ada)(ebin)]n ( 4 ) [ebin = ethanediaminebis(nicotinamide)] possesses a (3,6) triangular net based on {Co2(OCO)2} dimeric units. {[Cd(adc)(ebin)] · 2H2O}n ( 5 ) also shows dimeric units, although linked into a decorated (4,4) grid topology. Magnetic susceptibility studies of compound 4 revealed a decrease in χmT product upon cooling, ascribed to antiferromagnetic coupling concomitant with single‐ion effects [g = 2.39(2) with D = 40(3) cm–1 and J = –3.55(4) cm–1]. Compounds 1 and 5 undergo blue‐violet fluorescence upon ultraviolet irradiation; the zinc derivative 1 shows potential as a sensor for the solution‐phase detection of nitrobenzene and m‐nitrophenol. Thermal decomposition behavior of the five new phases is also discussed.  相似文献   

13.
A new metal‐organic framework (MOF) {[Cd2(bbib)2(ndc)2]?2DMF}n ( JXUST‐1 ) (bbib=1,3‐bis(benzimidazolyl)benzene, H2ndc=1,4‐naphthalenedicarboxylic acid, DMF=N,N‐dimethylformamide) has been solvothermally synthesized and characterized by single‐crystal X‐ray diffraction, PXRD, TGA, IR and elemental analysis. JXUST‐1 exhibits a three‐dimensional 6‐connected pcu topology with a Schläfli symbol {412.63} constructed by [Cd2(CO2)3] secondary building units. Fluorescence studies show that this MOF can sensitively and selectively recognize Al3+ via a fluorescence enhancement effect, and the detection limit is 0.048 ppm. Furthermore, JXUST‐1 displays relatively good thermal and chemical stabilities as well as reusability. All these results suggest JXUST‐1 to be a highly selective and recyclable luminescent sensing material for the detection of Al3+.  相似文献   

14.
The tape‐like chain {[(tptz)MnII(H2O)MnIII(CN)6]2MnII(H2O)2}n?4n MeOH?2n H2O based on the anisotropic building block hexacyanomanganate(III) exhibits long‐range magnetic ordering below 5.1 K as well as single‐chain magnetic behavior at lower temperatures with an effective energy barrier of 40.5(7) K.  相似文献   

15.
In the title compound, {[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4}n, each CoII ion is six‐coordinate in a slightly distorted octahedral geometry. Both CoII ions are located on twofold axes. One is surrounded by two O atoms from two biphenyl‐2,2′‐dicarboxylate (dpa) dianions, two N atoms from two 4,4′‐bipyridine (bpy) ligands and two water molecules, while the second is surrounded by four O atoms from two dpa dianions and two N atoms from two bpy ligands. The coordinated dpa dianion functions as a κ3‐bridge between the two CoII ions. One carboxylate group of a dpa dianion bridges two adjacent CoII ions, and one O atom of the other carboxylate group also chelates to a CoII ion. The CoII ions are bridged by dpa dianions and bpy ligands to form a chiral sheet. There are several strong intermolecular hydrogen bonds between the H2dpa solvent molecule and the chiral sheet, which result in a sandwich structure.  相似文献   

16.
Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen‐bond acceptors and donors in the assembly of supramolecular structures. Nitrogen‐heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (I), and catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}nickel(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one‐dimensional chains are further connected through O—H…O, O—H…N and N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.  相似文献   

17.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

18.
The title compound, [Co(C18H23N10)](BF4)2·H2O, is the result of complexing a Co cation (initially in a CoII state) with tris[2‐(1H‐imidazol‐2‐ylmethyleneamino)ethyl]amine (L), obtained by a condensation process involving imidazole‐2‐carbaldehyde and tris(2‐aminoethyl)amine. Both the Co cation and the ligand were modified in the synthesis process, the cation via oxidation to CoIII, and the ligand via deprotonation to convert it into the 2‐(2‐{bis[2‐(1H‐imidazol‐2‐ylmethyleneamino)ethyl]amino}ethyliminomethyl)imidazolide anion (L). The ligand chelates the metal centre in a hexadentate fashion, forming a slightly distorted octahedral CoN6 chromophore. Packing is governed by N—H...N hydrogen bonds defining zigzag chains. A similar structure in the literature is discussed, and the wrong assignment of the oxidation state, given therein to the Co cation, is corrected.  相似文献   

19.
A mixed‐valence Mn complex {[MnIIMnIII(HL)2(4,4′‐bpy)(H2O)2] · (ClO4)(DMF)3(4,4′‐bpy)0.5}n ( 1 ) [H2L = 3‐(2‐phenol)‐5‐(pyridin‐2‐yl)‐1,2,4‐triazole] was synthesized and characterized by X‐ray single‐crystal structure analysis and magnetic susceptibility. Single‐crystal X‐ray analysis revealed that complex 1 has a dinuclear core, in which adjacent central MnIII atoms are linked by 4,4′‐bipyridine to form an infinite one‐dimensional (1D) molecular configuration. According to the Mn surrounding bond lengths and bond valence sum (BVS) calculations, we demonstrated that the Mn atom coordinated to the pyridine N atoms is in the +2 oxidation state, while another Mn atom coordinated to the phenolic oxygen atoms is in the +3 oxidation state. Magnetic susceptibility data of the complex 1 indicate that the ferromagnetic interaction dominates in this complex.  相似文献   

20.
A new coordination polymer (CP), namely, poly[[diaquatris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]bis[μ6‐4‐(2,4‐dicarboxylatophenoxy)phthalato]tetracobalt(II)] hexahydrate], {[Co4(C16H6O9)2(C12H10N4)3(H2O)2]·6H2O}n, has been synthesized by solvothermal reaction. The CP was fully characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, and powder and single‐crystal X‐ray diffraction. It presents a three‐dimensional (3D) structure based on tetranuclear CoII secondary building units (SBUs) with a tfz‐d net and point symbol (43)2(46·618·84). The 4‐(2,4‐dicarboxyphenoxy)phthalic acid (H4dcppa) ligands are completely deprotonated and link {Co4(COO)4}4? SBUs into two‐dimensional (2D) layers. Furthermore, adjacent layers are connected by 1,4‐bis(1H‐imidazol‐1‐yl)benzene (bib) ligands, giving rise to a 3D supramolecular architecture. Interestingly, there are numerous elliptical cavities in the CP where isolated unique discrete hexameric water clusters have been observed. The results of thermogravimetric and magnetic analyses are described in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号