首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐substituted heteroacenes have been widely used as electroactive layers in organic electronic devices, and only a few of them have been investigated in organic resistive memory devices. Here, a novel N‐substituted heteroacene 2‐(4′‐(diphenylamino)phenyl)‐4,11‐bis((triisopropylsilyl)ethynyl)‐1H‐imidazo[4,5‐b]phenazine ( DBIP ) has been designed, synthesized, and characterized. Sandwich‐structure memory devices based on DBIP have been fabricated and the devices show non‐volatile and stable memory character with good endurance performance.  相似文献   

2.
Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen‐containing mesoporous carbon with high SSA (1390 m2 g?1), a suitable pore size distribution (1.5–8.1 nm), and a nitrogen content of 4.7 wt % through a facile one‐step self‐assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium–sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g?1 at 1 A g?1 and an excellent rate capability (180 F g?1, 10 A g?1). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium–sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g?1 at 837.5 mA g?1 and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles.  相似文献   

3.
4.
In consideration of the importance of nitrogen‐containing heterocycles in both medicinal and material chemistry, herein, we intend to summarize the most recent advances about their synthesis by electrochemical dehydrogenation.  相似文献   

5.
The π–π interactions between benzene and the aromatic nitrogen heterocycles pyridine, pyrimidine, 1,3,5‐triazine, 1,2,3‐triazine, 1,2,4,5‐tetrazine, and 1,2,3,4,5‐pentazine are systematically investigated. The T‐shaped structures of all complexes studied exhibit a contraction of the C? H bond accompanied by a rather large blue shift (40–52 cm?1) of its stretching frequency, and they are almost isoenergetic with the corresponding displaced‐parallel structures at reliable levels of theory. With increasing number of nitrogen atoms in the heterocycle, the geometries, frequencies, energies, percentage of s character at C, and the electron density in the C? H σ antibonding orbital of the complexes all increase or decrease systematically. Decomposition analysis of the total binding energy showed that for all the complexes, the dispersion energy is the dominant attractive contribution, and a rather large attraction originating from electrostatic contribution is compensated by its exchange counterpart.  相似文献   

6.
Graphene nanoribbons (GNRs) represent promising materials for the next generation of nanoscale electronics. However, despite substantial progress towards the bottom‐up synthesis of chemically and structurally well‐defined all‐carbon GNRs, strategies for the preparation of their nitrogen‐doped analogs remain at a nascent stage. This scarce literature precedent is surprising given the established use of substitutional doping for tuning the properties of electronic materials. Herein, we report the synthesis of a previously unknown class of polybenzoquinoline‐based materials, which have potential as GNR precursors. Our scalable and facile approach employs few synthetic steps, inexpensive commercial starting materials, and straightforward reaction conditions. Moreover, due to the importance of quinoline derivatives for a variety of applications, the reported findings may hold implications across a diverse range of chemical and physical disciplines.  相似文献   

7.
High density energetic salts containing nitrogen‐rich cations and the nitranilic anion were readily synthesized in high yield by metathesis reactions of sodium nitranilate 2 and an appropriate halide. All of the new compounds were fully characterized by elemental, spectral (IR, 1H, 13C NMR), and thermal (DSC) analyses. The structure of hydrazinium nitranilate ( 4 ) was also determined by single‐crystal X‐ray analysis. The high symmetry and oxygen content of the anion give these salts extensive hydrogen bonding capability which further results in the high densities, low water solubilities, and high thermal stabilities (Td> 200 °C) of these compounds. Theoretical performance calculations were carried out by using Gaussian 03 and Cheetah 5.0. The calculated detonation pressures (P) for these new salts fall between 17.5 GPa ( 10 ) and 31.7 GPa ( 4 ), and the detonation velocities (νD) range between 7022 m s?1 ( 13 ) and 8638 m s?1 ( 4 ).  相似文献   

8.
9.
10.
Carbon materials that are intrinsically co‐doped with nitrogen and sulfur heteroatoms are synthesised by facile annealing of nitrile‐functionalised thiazolium salts. Extremely high degrees of doping are achieved, especially for sulfur. The method further allows for direct tuning of the amounts of both N and S, establishing a new synthetic pathway in the emerging field of S‐doped carbon materials.  相似文献   

11.
Nonmetallic carbon‐based nanomaterials (CNMs) are important in various potential applications, especially after the emergence of graphene and carbon nanotubes, which demonstrate outstanding properties arising from their unique nanostructures. The pristine graphitic structure of CNMs consists of sp2 hybrid C?C bonds and is considered to be neutral in nature with low wettability and poor reactivity. To improve its compatibility with other materials and, hence, for greater applicability, CNMs are generally required to be functionalized effectively and/or doped with heteroatoms in their graphitic frameworks for feasible interfacial interactions. Among the various possible functional/doping elements, nitrogen (N) atoms have received much attention given their potential to fine tune the intrinsic properties, such as the work‐function, charge carrier concentration, surface energy, and polarization, of CNMs. N‐doping improves the surface energy and reactivity with enhanced charge polarization and minimal damage to carbon frameworks. The modified surface energy and chemical activity of N‐doped carbon nanomaterials (NCNMs) can be useful for a broad range of applications, including fuel cells, solar cells, Li‐ion batteries, supercapacitors, chemical catalysts, catalyst supports, and so forth.  相似文献   

12.
A high amount of heteroatom doping in carbon, although favorable for enhanced density of catalytically active sites, may lead to substantially decreased electroconductivity, which is necessary for the electrochemical oxygen reduction reaction. Herein, a relatively low amount of nitrogen was successfully doped into carbon nanotubes (CNTs) by a hydrothermal approach in one step, and the synthesized nitrogen‐doped CNT (CNT‐N) materials retained most of the original, excellent characteristics, such as the graphitic structure, tubular morphology, and high surface area, of CNTs. The resultant CNT‐N materials, although containing a relatively low amount of nitrogen doping, exhibited high electrocatalytic ORR activity, comparable to that of 20 wt % Pt/C; long durability; and, more importantly, largely inhibited methanol crossover effect.  相似文献   

13.
Herein, we report the design and synthesis of a series of novel cationic nitrogen‐doped nanographenes (CNDNs) with nonplanar geometry and axial chirality. Single‐crystal X‐ray analysis reveals helical and cove‐edged structures. Compared to their all‐carbon analogues, the frontier orbitals of the CNDNs are energetically lower lying, with a reduced optical energy gap and greater electron‐accepting behavior. Cyclic voltammetry shows all the derivatives to undergo quasireversible reductions. In situ spectroelectrochemical studies prove that, depending on the number of nitrogen dopants, either neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) are formed upon reduction. The concept of cationic nitrogen doping and introducing helicity into nanographenes paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons with cationic nitrogen dopants.  相似文献   

14.
15.
A mild, convenient, and step‐economical intramolecular aminotrifluoromethylation of unactivated alkenes with a variety of electronically distinct, nitrogen‐based nucleophiles in the presence of a simple copper salt catalyst, in the absence of extra ligands, is described. Many different nitrogen‐based nucleophiles (e.g., basic primary aliphatic and aromatic amines, sulfonamides, carbamates, and ureas) can be employed in this new aminotrifluoromethylation reaction. The aminotrifluoromethylation process allows straightforward access to diversely substituted CF3‐containing pyrrolidines or indolines, in good to excellent yields, through a direct difunctionalization strategy from the respective acyclic starting materials. Mechanistic studies were conducted and a plausible mechanism was proposed.  相似文献   

16.
A new class of nitroguanidyl‐functionalized nitrogen‐rich materials derived from 1,3,5‐triazine and 1,2,4,5‐tetrazine was synthesized through reactions between N‐nitroso‐N′‐alkylguanidines and the hydrazine derivatives of 1,3,5‐triazine or 1,2,4,5‐tetrazine. These compounds were fully characterized using multinuclear NMR and IR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). The heats of formation for all compounds were calculated with Gaussian 03 and then combined with experimental densities to determine the detonation pressures (P) and velocities (Dv) of the energetic materials. Interestingly, some of the compounds exhibit an energetic performance (P and Dv) comparable to that of RDX, thus holding promise for application as energetic materials.  相似文献   

17.
18.
A boost from the branches : Incorporation of the dithieno[3,2‐b:2′,3′‐d]phosphole system as a core in oligo(phenylenevinylene) dendrimers (an example is shown here) provides materials that exhibit energy‐transfer features relaying incoming photons from the dendrons towards the core, which in turn shows enhanced emission intensity. The optical properties and self‐assembly features of the dendrimers can be impacted by the terminal groups (‐H, ‐CF3, or ‐NPh2) employed.

  相似文献   


19.
Synthesis of alternating pyridine–pyrrole molecular strands composed of two electron‐rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl–dipyridazine precursors. 2,6‐Bis[6‐(pyridazin‐3‐yl)]pyridine ligands 2 a – c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross‐coupling procedure. The yields of heterocyclic coupling between 2‐pyridyl zinc bromide reagents 12 a – c and 2,6‐bis(6‐trifluoromethanesulfonylpyridazin‐3‐yl)pyridine increased from 68 to 95 % following introduction of electron‐donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl–dipyridazines 2 b , c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6‐bis[5‐(pyridin‐2‐yl)pyrrol‐2‐yl]pyridines 1 b and 1 c in good yields. The absorption behavior of the donor–acceptor tripyridyl–dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (νem≈2×104 cm?1 in MeOH and CH2Cl2), and both pyrrolic ligands exhibit a remarkable quantum yield in CH2Cl2 (?f=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol?1. The ability of the tripyridyl–dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated.  相似文献   

20.
N‐Heteroacenes     
The synthesis and the property evaluation of several large N‐heteroacenes are discussed. Issues of stability and aromaticity are compared and investigated and a historical perspective of the field is given. Some of the larger heterocyclic materials that are evaluated in this concept article have been around for more than one hundred years, yet their chemistry and properties are not well known/understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号