首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Inositol hexakisphosphate (InsP6) is a central member of the inositol phosphate messengers in eukaryotic cells. Tools to manipulate the level of InsP6, particularly with compartment selectivity, are needed to enable functional cellular studies. We present cationic octa‐(4S)guanidiniumproline ( Z8 ) for the delivery of InsP6 into the cell nucleus. CD spectroscopy, binding affinity, dynamic light scattering, and computational studies revealed that Z8 binds tightly to InsP6 and upon binding undergoes a conformational change from a PPII‐helical structure to a structure that forms aggregates. The unique conformational features of the cationic oligoproline enable complex formation and cellular delivery of InsP6 with considerably greater efficacy than the flexible counterpart octaarginine.  相似文献   

2.
Inositol hexakisphosphate (InsP6) is a central member of the inositol phosphate messengers in eukaryotic cells. Tools to manipulate the level of InsP6, particularly with compartment selectivity, are needed to enable functional cellular studies. We present cationic octa-(4S)guanidiniumproline ( Z8 ) for the delivery of InsP6 into the cell nucleus. CD spectroscopy, binding affinity, dynamic light scattering, and computational studies revealed that Z8 binds tightly to InsP6 and upon binding undergoes a conformational change from a PPII-helical structure to a structure that forms aggregates. The unique conformational features of the cationic oligoproline enable complex formation and cellular delivery of InsP6 with considerably greater efficacy than the flexible counterpart octaarginine.  相似文献   

3.
Endocytosis is an important route for the intracellular delivery of biomacromolecules, wherein their inefficient endosomal escape into the cytosol remains a major barrier. Based on the understanding that endosomal membranes are negatively charged, we focused on the potential of cationic lytic peptides for developing endosomolysis agents to release such entrapped molecules. As such, a venom peptide, Mastoparan X, was employed and redesigned to serve as a delivery tool. Appending a tri‐glutamate unit to the N‐terminus attenuates the cytotoxicity of Mastoparan X by about 40 fold, while introduction of a NiII‐dipicolylamine complex enhances cellular uptake of the peptide by about 17 fold. Using the optimized peptide, various fluorescently labeled macromolecules were successfully delivered to the cytosol, enabling live‐cell imaging of acetylated histones.  相似文献   

4.
Herein, the design and synthesis of peptide-drug conjugates (PDCs) including different variants of the cell-penetrating peptide sC18 is presented. We first generated a series of novel sequence mutants of sC18 having either amino acid deletions and/or substitutions, and then tested their biological activity. The effects of histidine substituents were found to be not meaningful for sC18 uptake and cell selectivity. Moreover, building a nearly perfect amphipathic structure within a shortened sC18 derivative provided a peptide that was highly membrane-active, but also too cytotoxic. As a result, the most promising analog was sC18ΔE, which stands out due to its higher uptake efficacy compared to parent sC18. In the last set of experiments, we let the peptides react with the cytotoxic drug doxorubicin by Thiol–Michael addition to form novel PDCs. Our results indicate that sC18ΔE could be a more efficient drug carrier than parent sC18 for biomedical applications. However, cellular uptake using endocytosis and resulting entrapment of cargo inside vesicles is still a major critical step to overcome in CPP-containing peptide-drug development.  相似文献   

5.
The pH‐low insertion peptide (pHLIP) inserts into membranes and forms a transmembrane (TM) α‐helix in response to slight acidity, and has shown great potential for cancer diagnosis and treatment. As a lead, pHLIP is challenging to optimize because the mechanism of its pH‐dependent membrane interactions is not completely understood. Within pHLIP there are multiple D/E residues which could sense the pH change, the particular role played by each of them in the protonation‐driven insertion process is not clear. The precise location of the TM helix within the pHLIP sequence is also unknown. In this work, solid‐state NMR spectroscopy is used to address these central questions. Tracing backbone conformations revealed that the TM helix spans from A10 to D33 with a break at T19 to P20. Residue‐specific pKa values of D31, D33, D25, and D14 were determined to be 6.5, 6.3, 6.1, and 5.8, respectively, and define the sequence of protonations which lead to insertion. Furthermore, possible intermediate states which disrupt membranes at pH 6.4 were proposed based on tryptophan fluorescence quenching and NMR data.  相似文献   

6.
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell‐penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best‐odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.  相似文献   

7.
Functionalization of the tetracationic cyclic peptide (Ka)4 with a single guanidiniocarbonyl pyrrole (GCP) moiety, a weakly basic but highly efficient arginine analogue, completely alters the self‐assembly properties of the peptide. In contrast to the nonfunctionalized peptide 2 , which does not self‐assemble, GCP‐containing peptide 1 forms cationic nanofibers of micrometer length. These aggregates are efficient gene transfection vectors. DNA binds to their cationic surface and is efficiently delivered into cells.  相似文献   

8.
In this study, two types of BolA‐like amphiphilic peptides with dual ligands comprising a tumor‐targeting moiety of RGD sequence and a cell‐penetrating moiety of R8 sequence are designed and synthesized as gene vectors. The BolA‐structural peptide carriers can self‐assemble into spherical nanoparticles with a hydrophilic core and shell, which are similar to the viral capsid and can bind plasmid DNA in an aqueous medium to form viral‐mimetic complexes. It is found that the BolA‐like dual ligands system exhibits significantly enhanced gene expression in both HeLa and 293T cell lines, as compared with poly(ethylenimine) PEI. These BolA‐like amphiphilic peptides are promising in clinical trials of gene therapy.

  相似文献   


9.
An aptamer specifically binding the interleukin‐6 receptor and intrinsically comprising multiple units of the nucleoside analogue 5‐fluoro‐2′‐deoxyuridine can exert a cytostatic effect direcly on certain cells presenting the receptor. Thus the modified aptamer fulfils the requirements for active drug targeting in an unprecedented manner. It can easily be synthesized in a single enzymatic step and it binds to a cell surface receptor that is conveyed into the lysosome. Upon degradation of the aptamer by intracellular nucleases the active drug is released within the targeted cells exclusively. In this way the aptamer acts as a prodrug meeting two major prerequisites of a drug delivery system: specific cell targeting and the controlled release of the drug triggered by an endogenous stimulus.  相似文献   

10.
Photoconversion of fluorescent proteins by blue and complementary near‐infrared light, termed primed conversion (PC), is a mechanism recently discovered for Dendra2. We demonstrate that controlling the conformation of arginine at residue 66 by threonine at residue 69 of fluorescent proteins from Anthozoan families (Dendra2, mMaple, Eos, mKikGR, pcDronpa protein families) represents a general route to facilitate PC. Mutations of alanine 159 or serine 173, which are known to influence chromophore flexibility and allow for reversible photoswitching, prevent PC. In addition, we report enhanced photoconversion for pcDronpa variants with asparagine 116. We demonstrate live‐cell single‐molecule imaging with reduced phototoxicity using PC and record trajectories of RNA polymerase in Escherichia coli cells.  相似文献   

11.
A new series of MnII coordination polymers, namely, [{Mn(L)(H2O)2} ? 2 Nap] ( CP1 ), [{Mn(L)(Ibu)2(H2O)2}] ( CP2 ), [{Mn(L)(Flr)2(H2O)2}] ( CP3 ), [{Mn(L)(Ind)2(H2O)2} ? H2O] ( CP4 ), [{Mn2(L)2(μ‐Flu)4(H2O)} ? L] ( CP5 ), [{Mn2(L)2(μ‐Tol)4(H2O)2}] ( CP6) and [{Mn2(L)2(μ‐Mef)4(H2O)2}] ( CP7 ) (Nap=naproxen, Ibu=ibuprofen, Flr=flurbiprofen, Ind=indometacin, Flu=flufenamic acid, Tol=tolfenamic acid and Mef=mefenamic acid) derived from various non‐steroidal anti‐inflammatory drugs (NSAIDs) and the organic linker 1,2‐bis(4‐pyridyl)ethylene (L) have been synthesized with the aim of being used for cell imaging and drug delivery. Single‐crystal X‐ray diffraction (SXRD) studies revealed that the NSAID molecules were part of the coordination polymeric network either through coordination to the metal center (in the majority of the cases) or through hydrogen bonding. Remarkably, all the MnII coordination polymers were found to be soluble in DMSO, thereby making them particularly suitable for the desired biological applications. Two of the coordination polymers (namely, CP1 and CP3 ) reported herein, were found to be photoluminescent both in the solid as well as in the solution state. Subsequent experiments (namely, MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide), and PGE2 (prostaglandin E2) assays) established their biocompatibility and anti‐inflammatory response. In vitro studies by using a macrophage cell line (i.e., RAW 264.7) revealed that both CP1 and CP3 were excellent cell imaging agents. Finally, biodegradability studies under simulated physiological conditions in phosphate‐buffered saline (PBS) at pH 7.6 showed that slow and sustained release of the corresponding NSAID was indeed possible from both CP1 and CP3 .  相似文献   

12.
Antibody–drug conjugates (ADCs) offer increased efficacy and reduced toxicity compared to systemic chemotherapy. Less attention has been paid to peptide–drug delivery, which has the potential for increased tumor penetration and facile synthesis. We report a knottin peptide–drug conjugate (KDC) and demonstrate that it can selectively deliver gemcitabine to malignant cells expressing tumor‐associated integrins. This KDC binds to tumor cells with low‐nanomolar affinity, is internalized by an integrin‐mediated process, releases its payload intracellularly, and is a highly potent inhibitor of brain, breast, ovarian, and pancreatic cancer cell lines. Notably, these features enable this KDC to bypass a gemcitabine‐resistance mechanism found in pancreatic cancer cells. This work expands the therapeutic relevance of knottin peptides to include targeted drug delivery, and further motivates efforts to expand the drug‐conjugate toolkit to include non‐antibody protein scaffolds.  相似文献   

13.
We report a comprehensive study on novel, highly efficient, and biodegradable hybrid molecular transporters. To this end, we designed a series of cell‐penetrating, cube‐octameric silsesquioxanes (COSS), and investigated cellular uptake by confocal microscopy and flow cytometry. A COSS with dense spatial arrangement of guanidinium groups displayed fast uptake kinetics and cell permeation at nanomolar concentrations in living HeLa cells. Efficient uptake was also observed in bacteria, yeasts, and archaea. The COSS‐based carrier was significantly more potent than cell‐penetrating peptides (CPPs) and displayed low toxicity. It efficiently delivered a covalently attached cytotoxic drug, doxorubicin, to living tumor cells. As the uptake of fluorescently labeled carrier remained in the presence of serum, the system could be considered particularly attractive for the in vivo delivery of therapeutics.  相似文献   

14.
Potassium‐ion batteries are promising for low‐cost and large‐scale energy storage applications, but the major obstacle to their application is the lack of safe and effective electrolytes. A phosphate‐based fire retardant such as triethyl phosphate is now shown to work as a single solvent with potassium bis(fluorosulfonyl)imide at 0.9 m , in contrast to previous Li and Na systems where phosphates cannot work at low concentrations. This electrolyte is optimized at 2 m , where it exhibits the advantages of low cost, low viscosity, and high conductivity, as well as the formation of a uniform and robust salt‐derived solid‐electrolyte interphase layer, leading to non‐dendritic K‐metal plating/stripping with Coulombic efficiency of 99.6 % and a highly reversible graphite anode.  相似文献   

15.
The shape of eukaryotic cells is determined by the cytoskeleton associated with membrane proteins; however, the detailed mechanism of how the integral morphologies with structural stability is generated and maintained is still not fully understood. Here, based on the Frame‐Guided Assembly (FGA) strategy, we successfully prepared hetero‐liposomes with structural composition similar to that of eukaryotic cells by screening a series of transmembrane peptides as the leading hydrophobic groups (LHGs). It was demonstrated that the conformation and transmembrane mode of the LHGs played dominant roles during the FGA process. The FGA liposomes were formed with excellent stability, which may further provide evidence for the cytoskeleton–membrane protein–lipid bilayer model. Taking advantage of the biocompatibility and stability, the FGA liposomes were also applied to prepare novel drug delivery vehicles, which is promising in diagnostic imaging and cancer therapy applications.  相似文献   

16.
17.
The design of inhibitors of intracellular protein–protein interactions (PPIs) remains a challenge in chemical biology and drug discovery. We propose a cyclized helix‐loop‐helix (cHLH) peptide as a scaffold for generating cell‐permeable PPI inhibitors through bifunctional grafting: epitope grafting to provide binding activity, and arginine grafting to endow cell‐permeability. To inhibit p53–HDM2 interactions, the p53 epitope was grafted onto the C‐terminal helix and six Arg residues were grafted onto another helix. The designed peptide cHLHp53‐R showed high inhibitory activity for this interaction, and computational analysis suggested a binding mode for HDM2. Confocal microscopy of cells treated with fluorescently labeled cHLHp53‐R revealed cell membrane penetration and cytosolic localization. The peptide inhibited the growth of HCT116 and LnCap cancer cells. This strategy of bifunctional grafting onto a well‐structured peptide scaffold could facilitate the generation of inhibitors for intracellular PPIs.  相似文献   

18.
Live‐cell labeling, super‐resolution microscopy, single‐molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N‐nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA‐based small interaction pairs described so far. Coupled to bright organic fluorophores with fine‐tuned photophysical properties, the super‐chelator probes were delivered into human cells by chemically gated nanopores. These super‐chelators permit kinetic profiling, multiplexed labeling of His6‐ and His12‐tagged proteins as well as single‐molecule‐based super‐resolution imaging.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号