首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(2):559-565
Renal insufficiencies and muscle diseases can be easily identified from the concentration of creatinine in blood and urine. Although various chemical sensors have been developed to detect creatinine, selectivity and robustness of chemical sensors are the main obstacles for many researchers. To overcome these difficulties, finding a suitable chemical biosensor with long‐term stability, low cost, high sensitivity and selectivity for the detection of creatinine is immensely desirable. Herein, we have developed a novel enzymeless creatinine biosensor for the trace level detection of creatinine using reduced graphene oxide (RGO)/ silver nanoparticles (AgNPs) which was prepared by simple one step electrochemical potentiodyanamic method. The anodic peak current of AgNPs gradually decreased when the concentration of creatinine was increased. Based on the decrease of anodic peak current, we have introduced a new platform for the detection of creatinine. The adsorption of creatinine on AgNPs was confirmed by various techniques. The newly proposed biosensor exhibited a very low detection limit of 0.743 pM with linear range from 10 pM to 120 pM. The demonstrated sensor can detect creatinine even in the presence of other interfering biomolecules such as glucose, ascorbic acid, uric acid, urea and creatine.  相似文献   

2.
《Analytical letters》2012,45(15):2946-2948
Abstract

The liquid chromatography isotope dilution mass spectrometry (LC/ID‐MS) has recently been used for the certification of organic reference materials. We are developing a new definitive method of LC‐ID/MS as to determination creatinine in serum. We prepared a stock standard solution of creatinine in 10 mmol/l of acetic acid at a concentration of 8.84 mmol/l. With this acetic acid concentration, creatinine dissolved completely in a few minutes. This stock standard solution was stable at least for 1 year and has widely applications (such as GC‐MS, LC‐MS, LC, colorimetric method, etc).  相似文献   

3.
4.
Over the years there has been a growing interest in the therapeutic potential for central nervous system pathologies of sigma receptor modulators. The widely studied PRE‐084 and our compounds RC‐33 and RC‐34 are very potent and selective sigma 1 receptor agonists that could represent promising drug candidates for Amyotrophic Lateral Sclerosis (ALS). Herein, we develop and validate robust and easy‐to‐use reverse‐phase chromatographic methods suitable for detecting and quantifying PRE‐084, RC‐33 and RC‐34 in mouse blood, brain and spinal cord. An HPLC/UV/ESI‐MS system was employed for analyzing PRE‐084 and an HPLC/UV‐PDA system for determining RC‐33 and RC‐34. Chromatographic separations were achieved on Waters Symmetry RP18 column (150 × 3.9 mm, 5 µm), eluting with water and acetonitrile (both containing 0.1% formic acid) in gradient conditions. The recovery of PRE‐084, RC‐33 and RC‐34 was >95% in all the considered matrices. Their limits of quantitation and detection were also determined. Validation proved the methods be suitable for separating tested compounds from endogenous interferences, being characterized by good sensitivity, linearity, precision and accuracy. A preliminary central nervous system distribution study showed a high distribution of RC‐33 in brain and spinal cord, with concentration values well above the determined limit of quantitation. The proposed methods will be used in future preclinical investigations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples.
Figure
?  相似文献   

6.
A biosensor system for simultaneous determination of creatinine and urea in blood serum and dialysate samples was developed. It consisted of creatinine and urea biosensors based on a potentiometric transducers with two identical pH‐sensitive field‐effect transistors. In creatinine biosensor, creatinine deiminase immobilized via photopolymerization in PVA/SbQ polymer on one transistor served as a biorecognition element, while bovine serum albumin in PVA/SbQ polymer placed on the second transistor was used for reference. The urea biosensor was created in the same way but recombinant urease was used instead of creatinine deiminase. The linear ranges of creatinine and urea measurement were 0.02–2 mM and 0.5–15 mM, correspondingly, which allowed simultaneous determination of the metabolites. Response time of the biosensor system was 2–3 min; RSD of responses did not exceeded 5 %. The biosensors demonstrated absence of non‐selective response towards components of blood dialysate and serum. Urea and creatinine concentrations were determined in 20 samples of blood dialysate and serum. The results correlated well with traditional methods of analysis. Creatinine and urea biosensors were stable during five months of storage (during this time the responses decreased by about 10 %). The proposed biosensor system can be effectively used for analysis of serum samples and for hemodialysis control.  相似文献   

7.
Immobilized enzyme nylon-tube reactors incorporating creatinine iminohyrolase (CI) and glutamate dehydrogenase (GDH) were used to assay creatinine in serum and urine. Optimum substrate concentrations for the assay were determined. The reactors were incorporated into a continuous flow system for creatinine analysis. The method was evaluated with respect to linearity, sample interaction, precision, accuracy, and analytical recovery. Comparison studies were carried out with a standard Jaffé method and the effect of interfering substances was investigated. From the results obtained, it was concluded that the assay was suitable as a simple, reliable, and specific method for serum and urine creatinine determinations.  相似文献   

8.
《Electroanalysis》2005,17(24):2246-2253
Coated‐wire (CW) and tubular (Tu) type membrane sensors for creatinine are developed. These consist of creatinine tungstophosphate(CTP), creatinine molybdophosphate (CMP) and creatinine picrolonate (CPC) ion‐pair complexes as electroactive materials dispersed in plasticized poly(vinyl chloride) matrix membranes. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near‐Nernstian response with slopes of 62.9, 58.1, and 55.2 mV decade?1 over the concentration range 1×10?2–5.0×10?6, 1×10?2–7.5×10?5, and 1×10?2?3.1×10?5 mol L?1. The lower detection limits are 0.39, 3.49, and 2.20 μg mL?1 creatinine with CTP, CMP and CPC membrane based sensors plasticized with o‐NPOE, respectively. Tubular and coated wire CTP membrane sensors are incorporated in flow‐through cells and used as detectors for flow injection analysis (FIA) of creatinine. The intrinsic characteristics of the detectors under hydrodynamic mode of operation in a low dispersion manifold are determined and compared with data obtained under static mode of operation. With 10?2 mol L?1 phosphate buffer of pH 4.5 as a carrier solution, the tubular and coated wire CTP detectors exhibit rapid response of 58.9 and 50.7 mV decade?1 over the concentration range 1×10?2–1×10?5 mol L?1 and detection limits of 0.39 μg mL?1 and 0.85 μg mL?1, respectively. Validation of the assay methods with the proposed sensors by measuring the lower detection limit, range, accuracy, precision, repeatability and between‐day‐variability reveals good performance characteristics confirming applicability for continuous determination of creatinine. The sensors are used for determining creatinine in human blood serum at an input rate of 40 samples per hour. No interferences are caused by creatine, most common anions, cations and organic species normally present in biological fluids. The results favorably compare with data obtained using the standard spectrophotometric method.  相似文献   

9.
We present an ultra high performance liquid chromatography with ultraviolet spectroscopy and quadrupole time‐of‐flight mass spectrometry method for the simultaneous quantification of ten purines (adenine, hypoxanthine, guanine, xanthine, deoxyadenosine, adenosine, inosine, guanosine, xanthosine, and uric acid) and creatinine in human urine. After chromatographic separation on an ACE Excel 2 AQ column, high abundant creatinine and uric acid and the other low abundant purines were sequentially detected by ultraviolet and quadrupole time‐of‐flight mass spectrometry within a single run. Method validations including specificity (improved by accurate mass measurement), linearity (correlation coefficients ≥0.9944), limit of quantification (0.002–9.756 µg/mL), intra‐ and interday precision (relative standard deviations ≤9.1 and 14.0%, respectively), accuracy (relative errors ≤13.1%), extraction recovery (between 90.3 and 109.6%), matrix effect (between 85.3 and 110.5%), and stability (relative errors ≤14.3%) were fully evaluated. This approach was applied to characterize the disordered purine metabolism in acute and chronic gout as an example. Quantitative results (normalized by creatinine) showed that an overproduction of urinary purine precursors might be involved in the gout process. The developed method represents a useful tool to investigate the purine disturbances in gout and other relevant diseases.  相似文献   

10.
The predominant circulating folate coenzyme in plasma/serum, 5‐methyltetrahydrofolate (5‐MTHF) was determined in human blood, serum and urine using a method based on the hyphenation of capillary ITP and zone electrophoresis. Measurements were done with a commercially available instrument for capillary isotachophoresis equipped with a column‐switching system. The choice of electrolytes was limited by the instability of 5‐MTHF and volatility of electrolytes for the potential coupling of the instrumentation with MS detector. To get an insight into the separability of individual sample components in an isotachophoretic analysis, we constructed zone existence diagrams for isotachophoretic electrolyte systems having a leading electrolyte composed of acetate and ammonium of pH 4.5 and 7.0, hydrocarbonate and ammonium, pH 7.8, chloride and ammonium, pH 5.6, and chloride and creatinine, pH 5.0, with hydroxide ion as the terminator. For isotachophoretic preseparation, the non‐volatile leading electrolyte with good buffering capacity composed of 1×10−2 M HCl and 2.5×10−2 M creatinine, pH 5.0, and terminating electrolyte composed of 1×10−2 M MES was selected as the most suitable. The optimum BGE for CZE analysis from the standpoint of analyte stability, separability and volatility for MS coupling was 1×10−2 M acetate with 3.5×10−2 M ammonium, pH 4.5. Using this combination of electrolytes, LODs reached with optical detection at 220 nm were 1.6×10−7 M in human blood, 1.1×10−7 M in human serum and 4.7×10−6 M in human urine. Estimated content of 5‐MTHF in blood and serum samples of women following oral daily administration of 0.8 mg of folic acid was 1.2×10−5 and 5.8×10−6 M, respectively.  相似文献   

11.
A novel method for the analysis of (3‐hydroxypropyl)mercapturic acid (HPMA), a major acrolein metabolite in human urine incorporating a molecularly imprinted solid‐phase extraction (MISPE) process using N‐acetylcysteine ‐imprinted mesoporous silica particles coupled with LC‐MS/MS detection was developed. The molecularly imprinted mesoporous silica particles were synthesized based on the supported material of ordered mesoporous silica SBA‐15 with N‐acetylcysteine (NAC) as template using surface molecular imprinting technology. The condition of MISPE procedures was optimized. The use of MISPE improved the accuracy and precision of the LC‐MS method and lowered the limit of detection (0.23 ng/mL). The recoveries at three spiked levels ranged between 88.5% to 108.6%. The developed MISPE method enabled the selective extraction of HPMA successfully in human urine and could be used as an effective approach for the determination of ultra‐trace HPMA in complex biological matrices. The results in real samples showed that median levels of HPMA were significantly higher (1922.0 ng/mg of creatinine, N = 75) in smokers than in nonsmokers (759.1 ng/mg of creatinine, N = 5), demonstrating the higher acrolein uptake in smokers than in nonsmokers.  相似文献   

12.
《Electroanalysis》2017,29(3):861-872
We report here a new electrochemical probe for the development of a sensitive, and selective sandwich‐type electrochemical immunosensor for the detection of epidermal growth factor receptor (EGFR). The probe is a newly synthesized bovine serum albumin (BSA)‐templated Pb nanocluster (PbNC@BSA). For fabrication of the immunosensor, we employed streptavidin‐coated magnetic beads (MB) as a platform for immobilization of the biotinylated primary antibody (Ab1), and utilized the PbNC@BSA conjugated to secondary antibody (Ab2) as a signaling probe. After sandwiching the target protein between Ab1 and Ab2, we dissolved PbNC@BSA into an acid, and recorded square wave anodic stripping voltammetric (SWASV) signal of the Pb ions as an analytical signal for quantification of the EGFR. The immunosensor responded linearly towards EGFR within the range of 0.4 ng/mL to 35 ng/mL, with a detection limit of 8 pg/mL. The immunosensor displayed good sensitivity, selectivity, stability, and reproducibility, and proved suitable for direct measurement of EGFR in human serum samples. Moreover, we used the as‐synthesized PbNC@BSA as a fluorescence label for in vitro cell viability analysis as well as bioimaging of cancerous HeLa and non‐cancerous HUVEC cells. PbNC@BSA exhibited low cytotoxicity and high biocompatibility in living cells, and was a suitable fluorescent probe for live cell imaging, with potential therapeutic applications.  相似文献   

13.
An electrochemical creatinine sensor based on a molecularly imprinted polymer (MIP)‐modified sol‐gel film on graphite electrode was developed. The surface coating of MIP over sol‐gel was advantageous to obtain a porous film with outwardly exposed MIP cavities for unhindered selective rebinding of creatinine from aqueous and biological samples. A fast differential pulse, cathodic stripping voltammetric response of creatinine can be obtained after being preanodized the sensor in neutral medium containing appropriate amount of creatinine at +1.8 V versus SCE for 120 s. A linear response over creatinine concentration in the range of 1.23 to 100 μg mL?1 was exhibited with a detection limit of 0.37 μg mL?1 (S/N=3).  相似文献   

14.
A kinetic-spectrophotometric study of the Jaffé reaction was carried out and the kinetic behaviour, calibration step and interfering effect of albumin on creatinine standard solutions were studied. It was concluded that there is a variation in the kinetic behaviour of the system when higher concentrations of creatinine, picrate or sodium hydroxide are tested. The experimental conditions for quantifying creatinine must be chosen so that the kinetic behaviour is the same in the dynamic concentration range. Changes in the absorbance (delta A) versus concentration equations were chosen as the most suitable for calibration graphs. It was also shown that creatinine results will have a proportional bias error if the interfering effect of albumin is not taken into consideration.  相似文献   

15.
This article describes the development of a rapid, simple, and sensitive analytical approach for the simultaneous determination of serotonin (5‐hydroxytryptamine) and creatinine in urine samples by combining two ultrasound‐assisted emulsification microextractions (USAEMEs) in series with on‐column stacking in CE. This serial USAEME procedure comprises analytes extraction from the donor solution (urine with K2CO3 additive) to an organic solvent followed by a back‐extraction from the organic phase into a small volume of hydrochloric acid. After 15 min of sample pretreatment, the acidic acceptor solution was analyzed directly on CE in the mode of capillary zone electrophoresis. The adoption of HCl as the acceptor phase not only provided effective back‐extraction but also facilitated pH‐mediated on‐column stacking in CE analysis. About 360‐fold sensitivity enhancement was achieved for serotonin detection. The limits of detection were 7.9 nM for serotonin and 13.3 μM for creatinine, respectively. Satisfactory results were obtained with respect to precision and recovery. The proposed method has been demonstrated to be convenient and effective for the analysis of real urine samples. We believe that two USAEMEs in series will find wide applications in simplified sample pretreatment prior to CE analysis.  相似文献   

16.
A point‐of‐care device for the determination of elevated creatinine levels in blood is reported. This device potentially offers a new and simple clinical regime for the determination of creatinine that will give huge time savings and removal of several steps of determination. The test employs a disposable prefilled microchip and the handheld Medimate Multireader®. By optimizing the analytical conditions it was found that the LOD of the proposed method was 87 μM creatinine, close to the normal human serum levels that are in the range of 60 to 100 μM. A statistical analysis of the residual shows a normal distribution, indicating the absence of systematic errors in the proposed method. The test can be used to distinguish patients with renal insufficiency (creatinine levels >100 μM) from healthy persons. Long‐term monitoring could furthermore distinguish between acute renal failure and chronic kidney disease by the rate of creatinine concentration rise.  相似文献   

17.
A new continuous-flow automated enzymatic method suitable for the direct determination of creatinine in physiological samples is described. The proposed system utilizes an on-line gas predialysis unit in conjuction with a flow-through enzyme reactor coil and a potentiometric ammonia detector. The enzyme reactor contains immobilized creatinine iminohydrolase (EC 3.5.4.21) which converts creatinine to ammonia and N-methylhydantoin. Ammonia liberated from this reaction is detected downstream with the membrane electrode-based detector. The novel gas predialysis unit effectively removes >99.8% of endogenous ammonia (up to 1 mM) present in the sample. Thus, final peak potentials recorded by the electrode detector are directly proportional to the logarithm of creatinine concentrations present. The method is shown to be precise (<3%), selective, and capable of accurately determining creatinine in serum and urine samples containing abnormally high endogenous ammonia levels. Determinations of creatinine in serum samples (n = 30) using this new method correlate well with an existing Technicon AutoAnalyzer colorimetric method (r = 0.996).  相似文献   

18.
《Analytical letters》2012,45(12):1085-1090
Abstract

A fuel cell detector has been constructed with an activated carbon anode. The detector responds to creatinine, uric acid and lactic acid but not to glucose or urea. It is therefore suitable as the basis of a selective detector for certain blood metabolites. Methods for improving the selectivity are discussed.  相似文献   

19.
A high‐performance liquid chromatography with ultraviolet detection method has been developed for the simultaneous determination of a set of reliable markers of renal function, including creatinine, uric acid, kynurenine and tryptophan in plasma. Separation was achieved by an Agilent HC‐C18 (2) analytical column. Gradient elution and programmed wavelength detection allowed the method to be used to analyze these compounds by just one injection. The total run time was 25 min with all peaks of interest being eluted within 13 min. Good linear responses were found with correlation coefficient >0.999 for all analytes within the concentration range of the relevant levels. The recovery was: creatinine, 101 ± 1%; uric acid, 94.9 ± 3.7%; kynurenine, 100 ± 2%; and tryptophan, 92.6 ± 2.9%. Coefficients of variation within‐run and between‐run of all analytes were ≤2.4%. The limit of detection of the method was: creatinine, 0.1 µmol/L; uric acid, 0.05 µmol/L; kynurenine, 0.02 µmol/L; and tryptophan, 1 µmol/L. The developed method could be employed as a useful tool for the detection of chronic kidney disease, even at an early stage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A creatinine sensitive biosensor based on ion sensitive field-effect transistors (ISFETs) with immobilised creatinine deiminase (CD) is developed. CD is immobilised on the transducer surface by classical cross-linking with bovine serum albumin (BSA) in a glutaraldehyde (GA) vapour. The linear dynamic ranges of biosensors are between 0 and 5 mM creatinine concentration, and the sensor sensitivity depends on the sample buffer concentration. Minimal detection limit for creatinine determination in model solution with 144 mM NaCl and 5% BSA, pH 7.4, is about 10 muM. Biosensor responses are reproducible and stable during continuous work at least for 8 h, and the relative standard deviation of sensor response is approximately 3% (n=48, for creatinine concentrations of 0.2 and 0.6 mM). An investigation about storage stability of creatinine sensitive ENFETs kept in dry at 4-6 degrees C shows that biosensors demonstrate an excellent storage stability for at least 6 months and more. Moreover, creatinine sensitive enzymatic field-effect transistors (ENFETs), demonstrating very good performances, are very selective and specific and well suitable for hemodialysis monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号