首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Vaccines typically contain an antigen, delivery system (vehicle), and adjuvant, all of which contribute to inducing a potent immune response. Consequently, design of new vaccines is difficult, because the contributions and interactions of these components are difficult to distinguish. Here, it is aimed to develop an easy‐to‐use, non‐immunogenic, injectable depot system for sustained antigen release that will be suitable for assessing the efficacy of prolonged antigen exposure per se for inducing an immune response. This should mimic real‐life infections. Recombinant elastin‐like polypeptides with periodic cysteine residues (cELPs) are selected, which reportedly show little or no immunogenicity, as carriers and tetanus toxoid (Ttd) as an antigen. After subcutaneous injection of the mixture, cELP rapidly forms a disulfide cross‐linked hydrogel in situ, within which Ttd is physically incorporated, affording a biodegradable antigen depot. A series of Ttd‐containing hydrogels is examined. A single injection induces high levels of tetanus antibody with high avidity for at least 20 weeks in mice. The chain length of cELP proves critical, whereas differences in hydrophobicity has little effect, although hydrophilic cELPs are more rapidly biodegraded. This system's ability to distinguish the contribution of sustained antigen release to antibody induction should be helpful for rational design of next‐generation vaccines.  相似文献   

2.
The use of nanoparticles within living systems is a growing field, but the long‐term effects of introducing nanoparticles to a biological system are unknown. If nanoparticles remain localized after in vivo implantation unanticipated side effects due to unknown biodistribution can be avoided. Unfortunately, stabilization and retention of nanoparticles frequently alters their function.[1] In this work multiple hydrogel platforms are developed to look at long‐term localization of nanoparticle sensors with the goal of developing a sensor platform that will stabilize and localize the nanoparticles without altering their function. Two different hydrogel platforms are presented, one with a liquid core of sensors and another with sensors decorating the hydrogel's exterior, that are capable of localizing the nanoparticles without inhibiting their function. With the use of these new hydrogel platforms nanoparticle sensors can be easily implanted in vivo and utilized without concerns of nanoparticle impact on the animal.  相似文献   

3.
A hybrid supramolecular polymeric hydrogel is conveniently constructed via host–guest interaction of a host cyclodextrin polymer (poly‐CD) with a guest α‐bromonaphthalene polymer (poly‐BrNp) and mixing with 6‐thio‐β‐cyclodextrin (β‐SH‐CD) modified gold nanoparticles (GPCDs) in aqueous solution. According to the dynamic oscillatory data, the hydrogel exhibits markedly enhanced stiffness compared with the GPCD‐free one (both G′ and G“ values are almost twice as high as those of the original GPCD‐free hydrogel) due to the introduction of the inorganic gold nanoparticles. This hybrid supramolecular polymeric hydrogel has a rapid and excellent self‐healing property (only about 1 min, and the G′ and G” of the self‐healed hydrogel almost turned back to their original levels after 1 hour) in air (without adding any solvent or additive).  相似文献   

4.
Different methods for the covalent immobilization of specific antibodies and their fragments on a silicon surface with the subsequent formation of immune complexes that consist of an immobilized monoclonal antibody, an antigen molecule, and a molecule of a second monoclonal antibody labeled with gold nanoparticles have been studied. Prostate-specific antigen (PSA), which is a molecular biomarker for prostate cancer, was used as an antigen. A covalent conjugate of the fragments of PSA-specific antibodies with gold nanoparticles has been obtained using the thiol groups of the antibodies. Scanning electron microscopy (SEM) was used for the registration of immune complexes on the surface. The high resolution of the method made it possible to detect individual immune complexes by the presence of gold nanoparticles and to calculate their number. A new method for the chemical modification of silicon by 3-aminopropyltrimetoxysilane (APTMS) and a bifunctional reagent 1,4-phenylene diisothiocyanate (PDITC) has been developed. This method provides a uniform distribution of antigen-binding centers and their availability for the formation of immune complexes. The developed immobilization method is promising for the formation of a biospecific biosensor layer based on silicon nanowires.  相似文献   

5.
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe(3)O(4)) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe(3)O(4) nanoparticles (SPIONs) with high magnetization value (70emug(-1)) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13 microgmicrom(-2). It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.  相似文献   

6.
In this study, we immobilized enzymes by combining covalent surface immobilization and hydrogel entrapment. A model enzyme, glucose oxidase (GOX), was first covalently immobilized on the surface of silica nanoparticles (SNPs) via 3‐aminopropyltriethoxysilane (APTES), and the resultant SNP‐immobilized enzyme was physically entrapped within photopolymerized hydrogels prepared from two different molecular weights (MWs) (575 and 8000 Da) of poly(ethylene glycol)(PEG). The hydrogel entrapment resulted in a decrease in reaction rate and an increase in apparent Km of SNP‐immobilized GOX, but these negative effects could be minimized by using hydrogel with a higher MW PEG, which provides higher water content and larger mesh size. The catalytic rate of the PEG 8000 hydrogel was about ten times faster than that of the PEG 575 hydrogel because of enhanced mass transfer. Long‐term stability test demonstrated that SNP‐immobilized GOX entrapped within hydrogel maintained more than 60% of its initial activity after a week, whereas non‐entrapped SNP‐immobilized GOX and entrapped GOX without SNP immobilization maintained less than 20% of their initial activity. Incorporation of SNPs into hydrogel enhanced the mechanical strength of the hydrogel six‐fold relative to bare hydrogels. Finally, a hydrogel microarray entrapping SNP‐immobilized GOX was fabricated using photolithography and successfully used for quantitative glucose detection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Soft hydrogel nano‐ and micro‐structures have great potential applications in the field of tissue engineering and chemical sensors. In this paper, a supramolecular hydrogel was constructed by combining a triblock copolymer poly(ethylene oxide)100‐(propyleneoxide)70‐(ethyleneoxide)100 (PEO100‐PPO70‐PEO100 ) (Pluronic F127), mono‐6‐thio‐β‐cyclodextrins (SH‐β‐CDs), and silver nanoparticles. Here, SH‐β‐CDs couple to the silver nanoparticles via thio groups and include PPO blocks of F127 using the hydrophobic cavity to form pseudo‐polyrotaxanes. Moreover, the hydrogel can be transformed to a homogenous solution by the addition of hydrochloride powder. These results are important for research related to the construction of soft hydrogel materials and control their mechanical properties.  相似文献   

8.
《Electrophoresis》2017,38(13-14):1780-1787
An enzyme and antibody dual labeled gold nanoparticles enhancing chemiluminescence strategy was developed for highly sensitive CE immunoassay (IA) of prostate‐specific antigen (PSA). In this work, gold nanoparticles were labeled with horseradish peroxidase and antiprostate specific antigen‐antibody, and used as the marker (Ab*). After PSA (antigen, Ag) was added into the system, a noncompetitive immune reaction was happen between Ab* and Ag to form an immune complex (Ag–Ab*). Subsequently, the obtained Ag–Ab* and unreacted Ab* were separated by CE, and the chemiluminescence intensity of Ag‐Ab* was used to estimate PSA concentration. The calibration curve showed a good linearity in the range of 0.25–10 ng/mL. Based on a S/N of 3, the detection limit for PAS was estimated to be 0.092 ng/mL. Proposed CE method was applied for PSA quantification in human serum samples from healthy volunteers and patients with prostate cancer. The obtained results demonstrated that the proposed CE method may serve as an alternative tool for clinical analysis of PSA.  相似文献   

9.
While hydrophobic nanoparticles (NPs) have been long recognized to boost the immune activation, whether hydrophilic NPs modulate an immune system challenged by immune stimulators and how their hydrophilic properties may affect the immune response is still unclear. To answer this question, three polymers, poly(ethylene glycol) (PEG), poly(sulfobetaine) (PSB) and poly(carboxybetaine) (PCB), which are commonly considered hydrophilic, are studied in this work. For comparison, nanogels with uniform size and homogeneous surface functionalities were made from these polymers. Peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide (LPS) and an LPS‐induced lung inflammation murine model were used to investigate the influence of nanogels on the immune system. Results show that the treatment of hydrophilic nanogels attenuated the immune responses elicited by LPS both in vitro and in vivo. Moreover, we found that PCB nanogels, which have the strongest hydration and the lowest non‐specific protein binding, manifested the best performance in alleviating the immune activation, followed by PSB and PEG nanogels. This reveals that the immunomodulatory effect of hydrophilic materials is closely related to their hydration characteristics and their ability to resist non‐specific binding in complex media.  相似文献   

10.
The selective activation of the immune system using nanoparticles as a drug delivery system is a promising field in cancer therapy. Block copolymers from HPMA and laurylmethacrylate‐co‐hymecromone‐methacrylate allow the preparation of multifunctionalized core‐crosslinked micelles of variable size. To activate dendritic cells (DCs) as antigen presenting cells, the carbohydrates mannose and trimannose are introduced into the hydrophilic corona as DC targeting units. To activate DCs, a lipophilic adjuvant (L18‐MDP) is incorporated into the core of the micelles. To elicit an immune response, a model antigen peptide (SIINFEKL) is attached to the polymeric nanoparticle—in addition—via a click reaction with the terminal azide. Thereafter, the differently functionalized micelles are chemically and biologically characterized. While the core‐crosslinked micelles without carbohydrate units are hardly bound by DCs, mannose and trimannose functionalization lead to a strong binding. Flow cytometric analysis and blocking studies employing mannan suggest the requirement of the mannose receptor and DC‐SIGN for effective micelle binding. It could be suppressed by blocking with mannan. Adjuvant‐loaded micelles functionalized with mannose and trimannose activate DCs, and DCs preincubated with antigen‐conjugated micelles induce proliferation of antigen‐specific CD8+ T cells.  相似文献   

11.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

12.
An injectable nanofibrous hydrogel scaffold integrated with growth factors (GFs) loaded polysaccharide nanoparticles was developed that specifically allows for targeted adipose‐derived stem cells (ASCs) encapsulation and soft tissue engineering. The nanofibrous hydrogel was produced via biological conjugation of biotin‐terminated star‐shaped poly(ethylene glycol) (PEG‐Biotin) and streptavidin‐functionalized hyaluronic acid (HA‐Streptavidin). The polysaccharide nanoparticles were noncovalently assembled via electrostatic interactions between low‐molecular‐weight heparin (LMWH) and N,N,N‐trimethylchitosan chloride (TMC). Vascular endothelial growth factor (VEGF) was entrapped in the LMWH/TMC nanoparticles by affinity interactions with LMWH.  相似文献   

13.
Cancer immunotherapies have generated some miracles in the clinic by orchestrating our immune system to combat cancer cells. However, the safety and efficacy concerns of the systemic delivery of these immunostimulatory agents has limited their application. Nanomedicine-based delivery strategies (e.g., liposomes, polymeric nanoparticles, silico, etc.) play an essential role in improving cancer immunotherapies, either by enhancing the anti-tumor immune response, or reducing their systemic adverse effects. The versatility of working with biocompatible polymers helps these polymeric nanoparticles stand out as a key carrier to improve bioavailability and achieve specific delivery at the site of action. This review provides a summary of the latest advancements in the use of polymeric micelles for cancer immunotherapy, including their application in delivering immunological checkpoint inhibitors, immunostimulatory molecules, engineered T cells, and cancer vaccines.  相似文献   

14.
Herein, we report on a tumor nanovaccine LMNP@CM that enhances the process of antigen‐presenting by stimulating the immune system to uptake tumor antigens actively. The nanovaccine is comprised of polyethylene glycol modified liquid metal nanoparticles (LMNP) and tumor cell membranes (CM) as antigens. Under 808 nm irradiation, the photothermal conversion effect of injected LMNP can cause mild local inflammation, and subsequently induces antigen‐presenting cells active recruitment and facilitates cellular uptake of tumor antigens. Meanwhile, because of the immune adjuvant effect of metal materials, the nanovaccine LMNP@CM promotes the maturation and activation of antigen‐presenting cells and induces anti‐tumor immune response effectively. By priming the host immune recognition of tumor antigens, this nanovaccine displays prophylactic effects and significantly suppresses tumor growth in a mouse breast tumor model. The nanovaccine LMNP@CM represents a novel strategy of utilizing light‐controlled means to actively induce anti‐tumor immune processes, showing advanced therapeutic potentials and robust adaptability for treating multiple tumors by changing the loaded antigens.  相似文献   

15.
The synthesis of upconverting hydrogel nanocomposites by base‐catalyzed thiol‐ene click reaction between 10‐undecenoic acid capped Yb3+/Er3+‐doped NaYF4 nanoparticles and pentaerythritol tetrakis(3‐mercaptopropionate) (PETMP) as tetrathiol monomer is reported. This synthetic strategy for nanocomposite gels is quite different from works where usually the preformed gels are mixed with the nanoparticles. Developing nanocomposites by surface modification of capping ligands would allow tuning and controlling of the separation of the nanoparticles inside the gel network. The hydrogel nanocomposites prepared by thiol‐ene click reaction show strong enhancement in luminescence intensity compared to 10‐undecenoic acid‐capped Yb3+/Er3+‐doped NaYF4 nanoparticles through the upconversion process (under 980 nm laser excitation). The hydrogel nanocomposites display strong swelling characteristics in water resulting in porous structures. Interestingly, the resulting nanocomposite gels act as templates for the synthesis of dendrimer‐like Au nanostructures when HAuCl4 is reduced in the presence of the nanocomposite gels.  相似文献   

16.
Self‐assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small‐angle X‐ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right‐handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two‐fold and three‐fold hybrids are developed by introducing graphene oxide (GO) and in situ‐synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p‐nitrophenol to p‐aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design.  相似文献   

17.
Bacterial infectious diseases and bacterial‐infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross‐linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self‐healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria‐killing modes of hydrogels, several representative hydrogels such as silver nanoparticles‐based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self‐bacteria‐killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics‐loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.  相似文献   

18.
The preparation of millimeter‐sized poly(acrylamide‐co‐acrylic acid) hydrogel beads via inverse Pickering emulsion polymerization using starch‐based nanoparticles (SNPs) as stabilizers is reported. Amphiphilic starch is fabricated by the introduction of butyl glycidyl ether groups and palmitate groups, and the hydrophobically modified SNPs are fabricated by a nanoprecipitation process. The obtained SNPs could adsorb at oil‐water interfaces to stabilize an inverse Pickering emulsion, and the effects of oil/water volume fraction ratio and SNP concentration on emulsions are comprehensively studied. Poly(acrylamide‐co‐acrylic acid) hydrogel beads with a size of approximately 1 mm are obtained by inverse Pickering emulsion polymerization stabilized by SNPs. The morphology and structure of hydrogel beads are extensively investigated, which confirms that SNPs locate on the surface of hydrogel beads and act as emulsifiers and network structures present inside the beads. Polymerization is also detected to investigate the potential formation mechanism of hydrogel beads. The pH‐responsive property of hydrogel beads and its potential application for drug delivery are also explored.  相似文献   

19.
Summary: This paper describes a simple and facile approach to fabricate well dispersed silver nanoparticles (AgNPs) in poly[N‐isopropylacrylamide‐co‐(sodium acrylate)] hydrogels. The silver nanoparticles formed are spherical in shape with a narrow size distribution in the hydrogel networks in which the nanoparticles are stabilized by the polymer network. Uniformly dispersed silver nanoparticles were obtained with poly[N‐isopropylacrylamide‐co‐[sodium acrylate)] hydrogels, whereas a poly(N‐isopropylacrylamide)/poly(sodium acrylate) IPN gel showed aggregated nanoparticles. It is demonstrated that the hydrogel network structure determines the size and shape of the nanoparticles. These particles are more stable in the gel networks compared to other reduction methods. The hydrogel/silver nanohybrids were well characterized by XRD, UV‐vis spectrometry, scanning electron microscopy and transmission electron microscopy.

Schematic representation of the preparation of Ag nanoparticles in hydrogel networks.  相似文献   


20.
As agonists of TLR7/8, single‐stranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause off‐target effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNA‐based adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group ( CA‐O ) was approximately 100 nm, promoted effective recognition, and improved activation of antigen‐presenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CA‐O may increase the efficacy of ssRNA‐based adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号