首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The solid state interaction of the Zn1−xCoxO nominal system is investigated by means of diffusion couples and analysis of co-precipitated samples. The formation of a homogeneous Co:ZnO solid solution is found to be determined by the crystal structure from which CoII ions diffuse into the wurtzite lattice. No diffusion is observed whenever the CoO rock-salt structure is formed from the CoII precursor. On the contrary, the diffusion from the Co3O4 spinel phase is feasible but has a limited temperature range defined by the reduction at a high temperature of CoIII-CoII, since this process again leads to the formation of the rock-salt structure. However, when using a highly reactive and homogeneous co-precipitated starting powder, neither the spinel phase nor the rock-salt structure is formed, and a CoII:ZnO solid solution is obtained, which remains stable up to high temperatures.  相似文献   

2.
The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1 M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII/CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1 M KOH show selectivity towards the 4e ORR pathway giving H2O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e ORR as compared to the 2e pathway, consistent with experimental data.  相似文献   

3.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

4.
Mononuclear metal–dioxygen species are key intermediates that are frequently observed in the catalytic cycles of dioxygen activation by metalloenzymes and their biomimetic compounds. In this work, a side‐on cobalt(III)–peroxo complex bearing a macrocyclic N‐tetramethylated cyclam (TMC) ligand, [CoIII(15‐TMC)(O2)]+, was synthesized and characterized with various spectroscopic methods. Upon protonation, this cobalt(III)–peroxo complex was cleanly converted into an end‐on cobalt(III)–hydroperoxo complex, [CoIII(15‐TMC)(OOH)]2+. The cobalt(III)–hydroperoxo complex was further converted to [CoIII(15‐TMC‐CH2‐O)]2+ by hydroxylation of a methyl group of the 15‐TMC ligand. Kinetic studies and 18O‐labeling experiments proposed that the aliphatic hydroxylation occurred via a CoIV–oxo (or CoIII–oxyl) species, which was formed by O? O bond homolysis of the cobalt(III)–hydroperoxo complex. In conclusion, we have shown the synthesis, structural and spectroscopic characterization, and reactivities of mononuclear cobalt complexes with peroxo, hydroperoxo, and oxo ligands.  相似文献   

5.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

6.
Spinel oxides with the composition of AIIBIII2O4 (A and B are metal ions) represent an important class of anode material for water splitting to replace the currently used noble-metal catalysts. Although spinel electrocatalysts have widely been investigated for electrochemical water oxidation, the role of octahedral and tetrahedral sites influencing catalytic performance has been a topic of discussion for a long time and still under debate. Lately, this issue has been addressed by substituting redox-inert cation to the tetrahedral sites of cobalt spinels and comparing the electrochemical activity between them. However, rapid surface structural transformation of the catalysts under operating electrochemical conditions makes it difficult to infer the exact contribution of tetrahedral and octahedral sites for water oxidation. Herein, for the first time, we utilize the oxidant-driven water oxidation approach to reveal the responsible active sites using two spinel-type nanostructures, ZnIICo2IIIO4 and CoIICo2IIIO4 (Co3O4), synthesized by using a single-source precursor approach. Strikingly, a superior O2 production rate (0.98 mmolO2 molCo?1 s?1) following first-order reaction kinetics was achieved for ZnCo2O4 in the presence of CeIV as sacrificial electron acceptor compared to Co3O4 spinel (0.29 mmolO2 molCo?1 s?1). The structural and morphological stability of the ZnCo2O4 and Co3O4 post water oxidation catalysis confirms that the catalytic activity is strictly controlled by the geometry and electronic structure of the active site of the spinel structure. The higher performance of ZnCo2O4 over Co3O4 further indicates that the presence of CoII is not essential for catalytic water oxidation. The presence of redox inert ZnII at the tetrahedral site of ZnCo2O4 can facilitate the stabilization of a high-valent CoIV intermediate via oxidation of CoIII (situated at the octahedral site), and this intermediate can be regarded as the active species for water oxidation catalyst along with structural defects caused by surface Zn leaching.  相似文献   

7.
The crystal structure of the title compound, [CoCl(C18H37N4O2){ZnCl3}], has been determined by X‐ray diffraction.Cmeso‐5,5,7,12,12,14‐Hexa­methyl‐1,4,8,11‐tetra­aza­cyclotetradecane‐N‐acetate acts as a bridging ligand to coodinate with CoIII and ZnII ions. The CoIII ion is six‐coordinate in a nearly octahedral environment provided by one Cl atom, four N atoms of the bridging ligand, and one O atom. The ZnII ion is four‐coordinate in a distorted tetrahedral environment completed by three Cl atoms and an O atom of the bridging ligand.  相似文献   

8.
Transition metal (TM)‐based bimetallic spinel oxides can efficiently activate peroxymonosulfate (PMS) presumably attributed to enhanced electron transfer between TMs, but the existing model cannot fully explain the efficient TM redox cycling. Here, we discover a critical role of TM?O covalency in governing the intrinsic catalytic activity of Co3?xMnxO4 spinel oxides. Experimental and theoretical analysis reveals that the Co sites significantly raises the Mn valence and enlarges Mn?O covalency in octahedral configuration, thereby lowering the charge transfer energy to favor MnOh–PMS interaction. With appropriate MnIV/MnIII ratio to balance PMS adsorption and MnIV reduction, the Co1.1Mn1.9O4 exhibits remarkable catalytic activities for PMS activation and pollutant degradation, outperforming all the reported TM spinel oxides. The improved understandings on the origins of spinel oxides activity for PMS activation may inspire the development of more active and robust metal oxide catalysts.  相似文献   

9.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

10.
The self‐assembly of DyIII–3‐hydroxypyridine (3‐OHpy) complexes with hexacyanidocobaltate(III) anions in water produces cyanido‐bridged {[DyIII(3‐OHpy)2(H2O)4] [CoIII(CN)6]}?H2O ( 1 ) chains. They reveal a single‐molecule magnet (SMM) behavior with a large zero direct current (dc) field energy barrier, ΔE=266(12) cm?1 (≈385 K), originating from the single‐ion property of eight‐coordinated DyIII of an elongated dodecahedral geometry, which are embedded with diamagnetic [CoIII(CN)6]3? ions into zig‐zag coordination chains. The SMM character is enhanced by the external dc magnetic field, which results in the ΔE of 320(23) cm?1 (≈460 K) at Hdc=1 kOe, and the opening of a butterfly hysteresis loop below 6 K. Complex 1 exhibits white DyIII‐based emission realized by energy transfer from CoIII and 3‐OHpy to DyIII. Low temperature emission spectra were correlated with SMM property giving the estimation of the zero field ΔE. 1 is a unique example of bifunctional magneto‐luminescent material combining white emission and slow magnetic relaxation with a large energy barrier, both controlled by rich structural and electronic interplay between DyIII, 3‐OHpy, and [CoIII(CN)6]3?.  相似文献   

11.
The reaction of Hppko (Hppko = phenyl 2‐pyridyl ketone oxime) and CoCl2 · 6H2O in the CH3OH solvent with the presence of triethylamine (NEt3) at room temperature and the exposure to air resulted in the formation of a new pentanuclear, mixed‐valence cobalt complex with the molecular formula [{CoII(CH3O)3}2{CoIII33‐O)(ppko)3}Cl2]. X‐ray single crystal analysis displays a trigonal bipyramid configuration with the terminal two CoII ions wrapping an triangle [CoIII3O]7+ core. The intermolecular C–H ··· O and C–H ··· Cl interactions form a 2D network framework. The analysis of magnetic susceptibility revealed the dominant antiferromagnetic interactions and strong orbital contribution of CoII ions.  相似文献   

12.
In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition‐metal‐substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt‐containing Keggin POMs, [CoIIW12O40]6? ( 1 a ), [CoIIIW12O40]5? ( 2 a ), [SiCoII(H2O)W11O39]6? ( 3 a ), and [SiCoIII(H2O)W11O39]5? ( 4 a ), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited‐state dynamics of these compounds at an unprecedented level. All species exhibit a bi‐exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal‐to‐polyoxometalate charge transfer (MPCT) from CoII to W, while the longer‐lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion ( 1 a ) is far longer‐lived (τ=420 ps in H2O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single CoII atom is located in a pseudo‐octahedral addendum site. Short‐lived states are observed for the two CoIII‐containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to O→CoIII charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs.  相似文献   

13.
A novel neutral polymer, {[Co2(C7H3NO4)2(H2O)4]·2H2O}n, was hydrothermally synthesized using pyridine‐2,5‐dicarboxylate (2,5‐PDC2−) as the organic linker. It features a two‐dimensional layer structure constructed from one‐dimensional {[Co(2,5‐PDC)2]2−}n chains interlinked by [Co(H2O)4]+ units. The two CoII cations occupy special positions, sitting on inversion centres. Each 2,5‐PDC2− anion chelates to one CoII cation via the pyridine N atom and an O atom of the adjacent carboxylate group, and links to two other CoII cations in a bridging mode via the O atoms of the other carboxylate group. In this way, the 2,5‐PDC2− ligand connects three neighbouring CoII centres to form a two‐dimensional network. The two‐dimensional undulating layers are linked by extensive hydrogen bonds to form a three‐dimensional supramolecular structure, with the uncoordinated solvent molecules occupying the interlamellar region.  相似文献   

14.
Cyanide as a bridge can be used to construct homo‐ and heterometallic complexes with intriguing structures and interesting magnetic properties. These ligands can generate diverse structures, including clusters, one‐dimensional chains, two‐dimensional layers and three‐dimensional frameworks. The title cyanide‐bridged CuII–CoIII heterometallic compound, [CuIICoIII(CN)6(C4H11N2)(H2O)]n, has been synthesized and characterized by single‐crystal X‐ray diffraction analysis, magnetic measurement, thermal study, vibrational spectroscopy (FT–IR) and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM–EDS). The crystal structure analysis revealed that it has a two‐dimensional grid‐like structure built up of [Cu(Hpip)(H2O)]3+ cations (Hpip is piperazinium) and [Co(CN)6]3− anions that are linked through bridging cyanide ligands. The overall three‐dimensional supramolecular network is expanded by a combination of interlayer O—H...N and N—H...O hydrogen bonds involving the coordinated water molecules and the N atoms of the nonbridging cyanide groups and monodentate cationic piperazinium ligands. A magnetic investigation shows that antiferromagnetic interactions exist in the title compound.  相似文献   

15.
The synthesis of isoquinolines by site‐selective C H activation of O‐acyl oximes with a Cp*CoIII catalyst is described. In the presence of this catalyst, the C H activation of various unsymmetrically substituted O‐acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*CoIII system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*RhIII catalysts led to low selectivities and/or yields when unsymmetrical O‐acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C H activation step under Cp*CoIII and Cp*RhIII catalysis.  相似文献   

16.
Visible‐light capture activates a thermodynamically inert CoIII−CF3 bond for direct C−H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox‐active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi‐octahedral [(SOCO)CoIII(CF3)(MeCN)2] ( 2 ), but in non‐coordinating solvents the complex is red, square pyramidal [(SOCO)CoIII(CF3)(MeCN)] ( 3 ). Both are thermally stable, and 2 is stable in light. But exposure of 3 to low‐energy light results in facile homolysis of the CoIII−CF3 bond, releasing .CF3 radical, which is efficiently trapped by TEMPO. or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate‐derived oxidant because the CoII by‐product of CoIII−CF3 homolysis produces H2. The photophysical properties of 2 and 3 provide a rationale for the disparate light stability.  相似文献   

17.
The synthesis of isoquinolines by site‐selective C? H activation of O‐acyl oximes with a Cp*CoIII catalyst is described. In the presence of this catalyst, the C? H activation of various unsymmetrically substituted O‐acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*CoIII system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*RhIII catalysts led to low selectivities and/or yields when unsymmetrical O‐acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C? H activation step under Cp*CoIII and Cp*RhIII catalysis.  相似文献   

18.
19.
In the title compound, [Co(C18H37N4O3)](ClO4)Cl·H2O, the CoIII ion has a distorted octahedral geometry, with four N atoms and two O atoms constituting the coordination sphere. The crystal structure is stabilized by a three‐dimensional network of hydrogen bonds.  相似文献   

20.
A bulky bidentate ligand was used to stabilize a macrocyclic [FeIII8CoII6] cluster. Tuning the basicity of the ligand by derivatization with one or two methoxy groups led to the isolation of a homologous [FeIII8CoII6] species and a [FeIII6FeII2CoIII2CoII2] complex, respectively. Lowering the reaction temperatures allowed isolation of [FeIII6FeII2CoIII2CoII2] clusters with all three ligands. Temperature‐dependent absorption data and corresponding experiments with iron/nickel systems indicated that the iron/cobalt self‐assembly process was directed by the occurrence of solution‐state electron‐transfer‐coupled spin transition (ETCST) and its influence on reaction intermediate lability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号