首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The design, synthesis, and properties of the new microporous coordination polymer UMCM‐310 are described. The unique electronic character of the perylene‐based linker enables selective interaction with electron‐poor aromatics leading to efficient separation of nitroaromatics. UMCM‐310 possesses high surface area and large pore size and thus permits the separation of large organic molecules based on adsorption rather than size exclusion.  相似文献   

2.
Covalent post‐synthetic modification is a versatile method for gaining high‐level synthetic control over functionality within porous metal–organic frameworks and for generating new materials not accessible through one‐step framework syntheses. Here we apply this topotactic synthetic approach to a porous spin crossover framework and show through detailed comparison of the structures and properties of the as‐synthesised and covalently modified phases that the modification reaction proceeds quantitatively by a thermally activated single‐crystal‐to‐single‐crystal transformation to yield a material with lowered spin‐switching temperature, decreased lattice cooperativity, and altered color. Structure–function relationships to emerge from this comparison show that the approach provides a new route for tuning spin crossover through control over both outer‐sphere and steric interactions.  相似文献   

3.
Two anionic metal–organic frameworks were successfully prepared based on pre‐designed flexible multicarboxylate ligands and indium cations. Owing to the flexibility of the bridging organic linkers, which could not themselves sustain the frameworks, both of the frameworks showed thermal instability and shrinkage after removal of guest solvent molecules. Inspired by bamboo, we used a guest‐dependent approach to tune the permanent porosity of the MOFs. In this approach, several tetraalkyammonium cations of different sizes were introduced into the channels by cation exchange to act as partitions and to support the main frameworks. This approach significantly enhanced the stability of the framework and its permanent porosity. Moreover, the gas‐adsorption properties (such as gate sorption, hysteresis, and selectivity) of the MOFs were also modulated by the judicious choice of guest cations.  相似文献   

4.
Materials that display multiple stepped spin crossover (SCO) transitions with accompanying hysteresis present the opportunity for ternary, quaternary, and quinary electronic switching and data storage but are rare in existence. Herein, we present the first report of a four‐step hysteretic SCO framework. Single‐crystal structure analysis of a porous 3D Hofmann‐like material showed long‐range ordering of spin states: HS, HS0.67LS0.33, HS0.5LS0.5, HS0.33LS0.67, and LS. These detailed structural studies provide insight into how multistep SCO materials can be rationally designed through control of host–host and host–guest interactions.  相似文献   

5.
Using time‐resolved monochromatic high energy X‐ray diffraction, we present an in situ study of the solvothermal crystallisation of a new MOF [Yb2(BDC)3(DMF)2]?H2O (BDC=benzene‐1,4‐dicarboxylate and DMF=N,N‐dimethylformamide) under solvothermal conditions, from mixed water/DMF solvent. Analysis of high resolution powder patterns obtained reveals an evolution of lattice parameters and electron density during the crystallisation process and Rietveld analysis shows that this is due to a gradual topochemical replacement of coordinated solvent molecules. The water initially coordinated to Yb3+ is replaced by DMF as the reaction progresses.  相似文献   

6.
Assembly of copper(I) halide with a new tripodal ligand, benzene‐1,3,5‐triyl triisonicotinate (BTTP4), afforded two porous metal–organic frameworks, [Cu2I2(BTTP4)]?2 CH3CN ( 1? 2 CH3CN) and [CuBr(BTTP4)]?(CH3CN ? CHCl3 ? H2O) ( 2? solvents), which have been characterized by IR spectroscopy, thermogravimetry (TG), single‐crystal, and powder X‐ray diffraction (PXRD) methods. Compound 1.CH3CN is a polycatenated 3D framework that consists of 2D (6,3) networks through inclined catenation, whereas 2 is a doubly interpenetrated 3D framework possessing the ThSi2‐type ( ths ) (10,3)‐b topology. Both frameworks contain 1D channels of effective sizes 9×12 and 10×10 Å2, which amounts to 43 and 40 % space volume accessible for solvent molecules, respectively. The TG and variable‐temperature PXRD studies indicated that the frameworks can be completely evacuated while retaining the permanent porosity, which was further verified by measurement of the desolvated complex [Cu2I2(BTTP4)] ( 1′ ). The subsequent guest‐exchange study on the solvent‐free framework revealed that various solvent molecules can be adsorbed through a single‐crystal‐to‐single‐crystal manner, thus giving rise to the guest‐captured structures [Cu2I2(BTTP4)]?C6H6 ( 1.benzene ), [Cu2I2(BTTP4)]?2 C7H8 ( 1.2toluene ), and [Cu2I2(BTTP4)]?2 C8H10 ( 1.2ethyl benzene ). The gas‐adsorption investigation disclosed that two kinds of frameworks exhibited comparable CO2 storage capacity (86–111 mL g?1 at 1 atm) but nearly none for N2 and H2, thereby implying its separation ability of CO2 over N2 and H2. The vapor‐adsorption study revealed the preferential inclusion of aromatic guests over nonaromatic solvents by the empty framework, which is indicative of selectivity toward benzene over cyclohexane.  相似文献   

7.
8.
Sphere of destiny : Metal–organic spheres with remarkable encapsulation properties are readily prepared and their ability to host a wide range of guest species, including nanoparticles, fluorescent dyes, and quantum dots, is demonstrated. Both the metal–organic spheres and the encapsulated species maintain their fluorescent or magnetic properties, highlighting the importance of these systems as new multifunctional materials.

  相似文献   


9.
The separation of 1,3‐butadiene from C4 hydrocarbon mixtures is imperative for the production of synthetic rubbers, and there is a need for a more economical separation method, such as a pressure swing adsorption process. With regard to adsorbents that enable C4 gas separation, [Zn(NO2ip)(dpe)]n (SD‐65; NO2ip=5‐nitroisophthalate, dpe=1,2‐di(4‐pyridyl)ethylene) is a promising porous material because of its structural flexibility and restricted voids, which provide unique guest‐responsive accommodation. The 1,3‐butadiene‐selective sorption profile of SD‐65 was elucidated by adsorption isotherms, in situ PXRD, and SSNMR studies and was further investigated by multigas separation and adsorption–desorption‐cycle experiments for its application to separation technology.  相似文献   

10.
With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared‐layer‐type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n ( 1 ), [Zn2(fm)2(bpe)]n ( 2 ), [Zn2(fm)2(bpa)]n ( 3 ), and [Zn2(fm)2(bpy)]n ( 4 ) (tp=terephthalate, bpy=4,4′‐bipyridyl, fm=fumarate, bpe=1,2‐di(4‐pyridyl)ethylene and bpa=1,2‐di(4‐pyridyl)ethane). It was found that 4 , which contains the narrowest pores of all of these compounds, exhibited ethylene‐selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material.  相似文献   

11.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

12.
By exploiting the breathing behavior of nanopores, we have studied for the first time the dependency of the guest‐induced proton conductivity of an interpenetrated CuI metal–organic framework (CuI‐MOF, [ 1 ]) on various guest molecules. Proton conductivities of over 10?3 S cm?1 under humid conditions were induced by a series of guest molecules, namely N,N‐dimethylformamide, dimethyl sulfoxide, diethylamine, 1,4‐dinitrobenzene, nitrobenzene, pyridine, and 1H‐1,2,4‐triazole. A detailed investigation of the guest‐incorporated complexes revealed that low‐energy proton conduction occurs under humid conditions through the Grotthuss mechanism in [ 1 ?NB] and through the vehicle mechanism in the rest of the complexes. Single‐point energy computations revealed considerable stabilization upon guest encapsulation. To the best of our knowledge, [ 1 ] represents the first example in which considerably high protonic conductivity is triggered upon the facile incorporation of small molecules of such a variety. The investigation portrayed herein may be a stepping stone towards the rational design of proton‐conducting materials for practical applications.  相似文献   

13.
14.
Herein, the synthesis, crystal structure, and full characterization of a new soft porous coordination polymer (PCP) of ([Cu2(dmcapz)2(OH2)]DMF1.5)n ( 1 ) formulation, which is easily obtained in the reaction of CuX2 (X=Cl, NO3) salts with 3,5‐dimethyl‐4‐carboxypyrazole (H2dmcapz) is present. Compound 1 shows a copper(II) dinuclear secondary building unit (SBU), which is supported by two pyrazolate bridges and an unprecedented H2O bridge. The dinuclear SBUs are further bridged by the carboxylate ligands to build a diamondoid porous network. The structural transformations taking place in 1 framework upon guest removal/uptake has been studied in detail. Indeed, the removal of the bridging water molecules gives rise to a metastable evacuated phase ( 1 b ) that transforms into an extremely stable porous material ( 1 c ) after freezing at liquid‐nitrogen temperature. The soaking of 1 c into water allows the complete and instantaneous recover of the water‐exchanged material ( 1 a′ ). Remarkably, 1 b and 1 c materials possess structural bistability, which results in the switchable adsorptive functions. Therefore, the gas‐adsorption properties of both materials have been studied by means of single‐component gas adsorption isotherms as well as by variable‐temperature pulse‐gas chromatography. Both materials present permanent porosity and selective gas‐adsorption properties towards a variety of gases and vapors of environmental and industrial interest. Moreover, the flexible nature of the coordination network and the presence of highly active convergent open metal sites confer on these materials intriguing gas‐adsorption properties with guest‐triggered framework‐breathing phenomena being observed. The plasticity of CuII metal center and its ability to form stable complexes with different coordination numbers is at the origin of the structural transformations and the selective‐adsorption properties of the studied materials.  相似文献   

15.
A new avenue for making porous frameworks has been developed by borrowing an idea from molecularly imprinted polymers (MIPs). In lieu of the small molecules commonly used as templates in MIPs, soft metal components, such as CuI, are used to orient the molecular linker and to leverage the formation of the network. Specifically, a linear dicarboxylate linker with thioether side groups reacted simultaneously with Ln3+ ions and CuI, leading to a bimetallic net featuring strong, chemically hard Eu3+–carboxylate links, as well as soft, thioether‐bound Cu2I2 clusters. The CuI block imparts water stability to the host; with the tunable luminescence from the lanthanide ions, this creates the first white‐emitting MOF that is stable in boiling water. The Cu2I2 block also readily reacts with H2S, and enables sensitive colorimetric detection while the host net remains intact.  相似文献   

16.
MOF on MOF: Core–shell porous coordination polymer (PCP) crystals are fabricated at the single‐crystal level by epitaxial growth in solution. Synchrotron X‐ray diffraction measurements unveiled the structural relationship between the shell crystal and the core crystal, where in‐plane rotational epitaxial growth compensates the difference in lattice constant.

  相似文献   


17.
A variety of strategies have been developed to adsorb and separate light hydrocarbons in metal–organic frameworks. Here, we present a new approach in which the pores of a framework are lined with four different C3 sidechains that feature various degrees of branching and saturation. These pendant groups, which essentially mimic a low‐density solvent with restricted degrees of freedom, offer tunable control of dispersive host–guest interactions. The performance of a series of frameworks of the type Zn2(fu‐bdc)2(dabco) (fu‐bdc2?=functionalized 1,4‐benzenedicarboxylate; dabco=1,4‐diazabicyclo[2.2.2]octane), which feature a pillared layer structure, were investigated for the adsorption and separation of methane, ethane, ethylene, and acetylene. The four frameworks exhibit low methane uptake, whereas C2 hydrocarbon uptake is substantially higher as a result of the enhanced interaction of these molecules with the ligand sidechains. Most significantly, the adsorption quantities and selectivity were found to depend strongly upon the type of sidechains attached to the framework scaffold.  相似文献   

18.
19.
Molecular organization of donor and acceptor chromophores in self‐assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light‐harvesting systems. With this in mind, a redox‐active porous interpenetrated metal–organic framework (MOF), {[Cd(bpdc)(bpNDI)] ? 4.5 H2O ? DMF}n ( 1 ) has been constructed from a mixed chromophoric system. The μ‐oxo‐bridged secondary building unit, {Cd2(μ‐OCO)2}, guides the parallel alignment of bpNDI (N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH2=4,4′‐biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter‐net electron transfer. Encapsulation of electron‐donating aromatic molecules in the electron‐deficient channels of 1 leads to a perfect donor–acceptor co‐facial organization, resulting in long‐lived charge‐separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号