首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Andrea Walther 《PAMM》2005,5(1):55-58
Automatic differentiation (AD) provides a possibility to evaluate exact derivative information within working accuracy. Here, we present an approach for equality constrained optimization that is based essentially on AD by computing only direct sensitivities and adjoints of first and second order. Employing this information, we generate approximations of the required derivative matrices using the STR1 update instead of computing the full constraint Jacobian or the full Lagrangian Hessian at each iteration explicitly. Hence, this approach avoids the forming and factoring of the exact constraint Jacobian that is often required in each iteration step. In order to globalize this provable local convergent method, the algorithm was embedded in a trust-region framework. We apply a composite-step method similar to the Byrd-Omojokun approach that is well suited for the available information from the approximated matrices. For that purpose, the normal step is given by the dogleg method whereas a generalized CG-iteration is applied to compute the tangential step. Here, the fact that only inexact information of the constraint Jacobian is available forms the main difference to other existing algorithms, where often a factorization of the exact Jacobian is used. Numerical results are shown for an equality constrained problem of the CUTE set and a PDE-based optimization problem. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this article, an affine scaling interior trust-region algorithm which employs backtracking line search with filter technique is presented for solving nonlinear equality constrained programming with nonnegative constraints on variables. At current iteration, the general full affine scaling trust-region subproblem is decomposed into a pair of trust-region subproblems in vertical and horizontal subspaces, respectively. The trial step is given by the solutions of the pair of trust-region subproblems. Then, the step size is decided by backtracking line search together with filter technique. This is different from traditional trust-region methods and has the advantage of decreasing the number of times that a trust-region subproblem must be resolved in order to determine a new iteration point. Meanwhile, using filter technique instead of merit function to determine a new iteration point can avoid the difficult decisions regarding the choice of penalty parameters. Under some reasonable assumptions, the new method possesses the property of global convergence to the first-order critical point. Preliminary numerical results show the effectiveness of the proposed algorithm.  相似文献   

3.
Nonlinear programming without a penalty function   总被引:57,自引:0,他引:57  
In this paper the solution of nonlinear programming problems by a Sequential Quadratic Programming (SQP) trust-region algorithm is considered. The aim of the present work is to promote global convergence without the need to use a penalty function. Instead, a new concept of a “filter” is introduced which allows a step to be accepted if it reduces either the objective function or the constraint violation function. Numerical tests on a wide range of test problems are very encouraging and the new algorithm compares favourably with LANCELOT and an implementation of Sl1QP. Received: October 17, 1997 / Accepted: August 17, 2000?Published online September 3, 2001  相似文献   

4.
In this paper, we present a new model-based trust-region derivative-free optimization algorithm which can handle nonlinear equality constraints by applying a sequential quadratic programming (SQP) approach. The SQP methodology is one of the best known and most efficient frameworks to solve equality-constrained optimization problems in gradient-based optimization [see e.g. Lalee et al. (SIAM J Optim 8:682–706, 1998), Schittkowski (Optim Lett 5:283–296, 2011), Schittkowski and Yuan (Wiley encyclopedia of operations research and management science, Wiley, New York, 2010)]. Our derivative-free optimization (DFO) algorithm constructs local polynomial interpolation-based models of the objective and constraint functions and computes steps by solving QP sub-problems inside a region using the standard trust-region methodology. As it is crucial for such model-based methods to maintain a good geometry of the set of interpolation points, our algorithm exploits a self-correcting property of the interpolation set geometry. To deal with the trust-region constraint which is intrinsic to the approach of self-correcting geometry, the method of Byrd and Omojokun is applied. Moreover, we will show how the implementation of such a method can be enhanced to outperform well-known DFO packages on smooth equality-constrained optimization problems. Numerical experiments are carried out on a set of test problems from the CUTEst library and on a simulation-based engineering design problem.  相似文献   

5.
赵奇  张燕 《运筹学学报》2012,16(2):91-104
提出一种改进的求解极小极大问题的信赖域滤子方法,利用SQP子问题来求一个试探步,尾服用滤子来衡量是否接受试探步,避免了罚函数的使用;并且借用已有文献的思想, 使用了Lagrange函数作为效益函数和非单调技术,在适当的条件下,分析了算法的全局和局部收敛性,并进行了数值实验.  相似文献   

6.
In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic interior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior backtracking line search technique, each iterate switches to backtracking step generated by the general trust-region subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.  相似文献   

7.
We study piecewise decomposition methods for mathematical programs with equilibrium constraints (MPECs) for which all constraint functions are linear. At each iteration of a decomposition method, one step of a nonlinear programming scheme is applied to one piece of the MPEC to obtain the next iterate. Our goal is to understand global convergence to B-stationary points of these methods when the embedded nonlinear programming solver is a trust-region scheme, and the selection of pieces is determined using multipliers generated by solving the trust-region subproblem. To this end we study global convergence of a linear trust-region scheme for linearly-constrained NLPs that we call a trust-search method. The trust-search has two features that are critical to global convergence of decomposition methods for MPECs: a robustness property with respect to switching pieces, and a multiplier convergence result that appears to be quite new for trust-region methods. These combine to clarify and strengthen global convergence of decomposition methods without resorting either to additional conditions such as eventual inactivity of the trust-region constraint, or more complex methods that require a separate subproblem for multiplier estimation.   相似文献   

8.
This paper proposes and analyzes an affine scaling trust-region method with line search filter technique for solving nonlinear optimization problems subject to bounds on variables. At the current iteration, the trial step is generated by the general trust-region subproblem which is defined by minimizing a quadratic function subject only to an affine scaling ellipsoidal constraint. Both trust-region strategy and line search filter technique will switch to trail backtracking step which is strictly feasible. Meanwhile, the proposed method does not depend on any external restoration procedure used in line search filter technique. A new backtracking relevance condition is given which is weaker than the switching condition to obtain the global convergence of the algorithm. The global convergence and fast local convergence rate of this algorithm are established under reasonable assumptions. Preliminary numerical results are reported indicating the practical viability and show the effectiveness of the proposed algorithm.  相似文献   

9.
In this paper, we propose a new trust-region-projected Hessian algorithm with nonmonotonic backtracking interior point technique for linear constrained optimization. By performing the QR decomposition of an affine scaling equality constraint matrix, the conducted subproblem in the algorithm is changed into the general trust-region subproblem defined by minimizing a quadratic function subject only to an ellipsoidal constraint. By using both the trust-region strategy and the line-search technique, each iteration switches to a backtracking interior point step generated by the trustregion subproblem. The global convergence and fast local convergence rates for the proposed algorithm are established under some reasonable assumptions. A nonmonotonic criterion is used to speed up the convergence in some ill-conditioned cases. Selected from Journal of Shanghai Normal University (Natural Science), 2003, 32(4): 7–13  相似文献   

10.
This paper investigates a new class of optimization problems arising from power systems, known as nonlinear programs with stability constraints (NPSC), which is an extension of ordinary nonlinear programs. Since the stability constraint is described generally by eigenvalues or norm of Jacobian matrices of systems, this results in the semismooth property of NPSC problems. The optimal conditions of both NPSC and its smoothing problem are studied. A smoothing SQP algorithm is proposed for solving such optimization problem. The global convergence of algorithm is established. A numerical example from optimal power flow (OPF) is done. The computational results show efficiency of the new model and algorithm.  相似文献   

11.
提供了一种新的非单调内点回代线搜索技术的仿射内点信赖域方法解线性不等式约束的广义非线性互补问题(GCP).基于广义互补问题构成的半光滑方程组的广义Jacobian矩阵,算法使用l2范数作为半光滑方程组的势函数,形成的信赖域子问题为一个带椭球约束的线性化的二次模型.利用广义牛顿方程计算试探迭代步,通过内点映射回代技术确保迭代点是严格内点,保证了算法的整体收敛性.在合理的条件下,证明了信赖域算法在接近最优点时可转化为广义拟牛顿步,进而具有局部超线性收敛速率.非单调技术将克服高度非线性情况加速收敛进展.最后,数值结果表明了算法的有效性.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(11-12):3003-3015
This study presents a new trust-region procedure to solve a system of nonlinear equations in several variables. The proposed approach combines an effective adaptive trust-region radius with a nonmonotone strategy, because it is believed that this combination can improve the efficiency and robustness of the trust-region framework. Indeed, it decreases the computational cost of the algorithm by decreasing the required number of subproblems to be solved. The global and the quadratic convergence of the proposed approach is proved without any nondegeneracy assumption of the exact Jacobian. Preliminary numerical results indicate the promising behavior of the new procedure to solve systems of nonlinear equations.  相似文献   

13.
This paper is concerned with the implementation and testing of an algorithm for solving constrained least-squares problems. The algorithm is an adaptation to the least-squares case of sequential quadratic programming (SQP) trust-region methods for solving general constrained optimization problems. At each iteration, our local quadratic subproblem includes the use of the Gauss–Newton approximation but also encompasses a structured secant approximation along with tests of when to use this approximation. This method has been tested on a selection of standard problems. The results indicate that, for least-squares problems, the approach taken here is a viable alternative to standard general optimization methods such as the Byrd–Omojokun trust-region method and the Powell damped BFGS line search method.  相似文献   

14.
本文结合非单调内点回代技术,提供了新的仿射信赖域方法解含有非负变量约束和非线性等式约束的优化问题.为求解大规模问题,采用等式约束的Jacobian矩阵的QR分解和两块校正的双边既约Hessian矩阵投影,将问题分解成零空间和值空间两个信赖域子问题.零空间的子问题为通常二次目标函数只带椭球约束的信赖域子问题,而值空间的子问题使用满足信赖域约束参数的值空间投影向量方向.通过引入Fletcher罚函数作为势函数,将由两个子问题结合信赖域策略构成的合成方向,并使用非单调线搜索技术回代于可接受的非负约束内点步长.在合理的条件下,算法具有整体收敛性且两块校正的双边既约Hessian投影法将保持超线性收敛速率.非单调技术将克服高度非线性情况,加快收敛进展.  相似文献   

15.
We consider an efficient trust-region framework which employs a new nonmonotone line search technique for unconstrained optimization problems. Unlike the traditional nonmonotone trust-region method, our proposed algorithm avoids resolving the subproblem whenever a trial step is rejected. Instead, it performs a nonmonotone Armijo-type line search in direction of the rejected trial step to construct a new point. Theoretical analysis indicates that the new approach preserves the global convergence to the first-order critical points under classical assumptions. Moreover, superlinear and quadratic convergence are established under suitable conditions. Numerical experiments show the efficiency and effectiveness of the proposed approach for solving unconstrained optimization problems.  相似文献   

16.
A hybrid algorithm for nonlinear minimax problems   总被引:1,自引:0,他引:1  
In this paper, a hybrid algorithm for solving finite minimax problem is presented. In the algorithm, we combine the trust-region methods with the line-search methods and curve-search methods. By means of this hybrid technique, the algorithm, according to the specific situation at each iteration, can adaptively performs the trust-region step, line-search step or curve-search step, so as to avoid possibly solving the trust-region subproblems many times, and make better use of the advantages of different methods. Moreover, we use second-order correction step to circumvent the difficulties of the Maratos effect occurred in the nonsmooth optimization. Under mild conditions, we prove that the new algorithm is of global convergence and locally superlinear convergence. The preliminary experiments show that the new algorithm performs efficiently.  相似文献   

17.
提出了解约束优化问题的一类相容SQP滤子算法.利用序列二次规划方法结合信赖域技术计算试探步,而用滤子接受准则选择接受试探步.对二次规划子问题的不相容问题,应用Powell1978年于文[9]提出的方法对其约束引进参数进行了可行化处理.在一般条件下,算法具有全局收敛性.最后,数值试验显示了较好的结果.  相似文献   

18.
We analyze the convergence of a sequential quadratic programming (SQP) method for nonlinear programming for the case in which the Jacobian of the active constraints is rank deficient at the solution and/or strict complementarity does not hold for some or any feasible Lagrange multipliers. We use a nondifferentiable exact penalty function, and we prove that the sequence generated by an SQP using a line search is locally R-linearly convergent if the matrix of the quadratic program is positive definite and constant over iterations, provided that the Mangasarian-Fromovitz constraint qualification and some second-order sufficiency conditions hold. Received: April 28, 1998 / Accepted: June 28, 2001?Published online April 12, 2002  相似文献   

19.
In this paper, the calibration of the non linear Lotka–Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms.Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-region algorithms is more robust and three of them are numerically cheaper than the more usual line search approach.Computation of the first derivatives of the objective function is cheaper with the backward differentiation (or adjoint model) technique than with the forward method as soon as the number of parameter is greater than a few ones. In the optimisation problem, the additional information about the Jacobian matrix made available by the forward method reduces the number of iterations but does not compensate for the increased numerical costs.A quasi-Newton trust-region algorithm with backward differentiation and BFGS update after both successful and unsuccessful iterations represents a robust and efficient algorithm that can be used to calibrate very demanding dynamic models.  相似文献   

20.
We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号