首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The energies of protonation and Na+ cationization of glycine (GLY) and its (GLY ? H + Na) salt in the gas phase were calculated using ab inltio calculations. The proton affinity of GLY, valued at the MP2/6–31G*//3-21G level, is 937 kJ mol?1. The amino function is confirmed to be the most favourable site of protonation: ‘proton affinities’ of the carbonyl and hydroxyl functions are calculated to be 75 and 180 kJ mol?1, respectively, lower than that of NH2 at the MP2/6-31G*//3–21G level. Calculations performed up to the MP2/6–31G*//3–21G level give the Na+ affinity of GLY as 189 kJ mol?1 and the H+ and Na+ affinities of (GLY – H + Na) as 1079 and 298 kJ mol?1, respectively. The geometries of all neutral and protonated species optimized with the 3–21G basis set are described. Both H* and Na+ cations complex preferably between the nitrogen atom and the carbonyl oxygen atom, leading to pseudo-five-membered ring structures in which Na? O and Na? N bonds lengths are greater than 2 Å.  相似文献   

2.
We report a comparison of theoretical and experimental proton affinities at nitrogen and oxygen sites within a series of small molecules. The calculated proton affinities are determined using the semiempirical methods AM 1, MNDO , and PM 3; the ab initio Hartree–Fock method at the following basis levels: 3-21G //3-21G , 3-21+G //3-21G , 6-31G *//6-31G *, and 6-31+G (d, p)//6-31G *; and Møller–Plesset perturbation calculations: MP 2/6-31G *//6-31G *, MP 3/6-31G *//6-31G *, MP 2/6-31G +(d, p)//6-31G *, MP 3/6-31G +(d, p)//6-31G *, and MP 4(SDTQ )/6-31G +G (d, p)//6-31G *. The semiempirical methods have more nonsystematic scatter from the experimental values, compared to even the minimal 3-21G level ab initio calculations. The thermodynamically corrected 6-31G *//6-31G * proton affinities provide acceptable results compared to experiment, and we see no significant improvement over 6-31G *//6-31G * in the proton affinities with any of the higher-level calculations. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The alternative decomposition reactions CH2(OH)2 → CH2O + H2O and CH2(OH)2 + H2O → CH2O + 2H2O are investigated using the semiempirical PM 3 as well as the ab initio HF /3-21G , HF /6-31G , HF /6-31G **, and MP 2/6-31G ** calculations. Reactants, products, and appropriate transition states are located on corresponding potential energy surfaces and compared with those reported in earlier studies. © 1996 John Wiley & Sons, Inc.  相似文献   

4.

Ab initio Hartree–Fock calculations at the HF/6-31G* level of theory for geometry optimization and the MP2/6-31G*//HF/6-31G* and B3LYP/6-311G(2df,p)//HF/6-31G* levels for a single point total energy calculation are reported for the important energy-minimum conformations of 1,1-dioxo-thiane (2), 1,1-dioxo-1,2-dithiane (3), 1,1-dioxo-1,3-dithiane (4), 1,1-dioxo-1,4-dithiane (5), 1,1,2-trioxo-1,2-dithiane (6), 1,1,3-trioxo-1,3-dithiane (7), 1,1,4-trioxo-1,4-dithiane (8), 1,1,2,2-tetroxo-1,2-dithiane (9), 1,1,3,3-tetroxo-1,3-dithiane (10), and 1,1,4,4-tetroxo-1,4-dithiane (11). According to the MP2/6-31G*//HF/6-31G* calculations, compound 5 is more stable than 3 and 4 by 7.8 and 8.9 kJ mol?1, respectively. The axial geometries of 6 and 8 are more stable than the equatorial forms by 21.4 and 19.1 kJ mol?1, respectively, but the equatorial form of 7 is 4.1 kJ mol?1 more stable than the axial geometry. Compound 11 is more stable than 9 and 10 by 49.3 and 31.0 kJ mol?1, respectively.  相似文献   

5.
Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the three geometrical isomers of cycloocta-l,5-diene 1–3.  相似文献   

6.
An investigation employing the ab initio molecular orbital (MO) and density functional theory (DFT) methods to calculate structural optimization and conformational interconversion pathways for the two diastereoisomeric forms, (±) and meso configurations of 1,3,7,9-tetraphospha-cyclododeca-1,2,7,8-tetraene (1) was undertaken. Two axial symmetrical conformations are found for (±)-1 configuration. (±)-1-TB axial symmetrical form is found to be about 0.35 and 0.99 kcal mol?1 more stable than (±)-1-Crown axial symmetrical conformation, as calculated by HF/6-31G*//HF/6-31G* and B3LYP/6-31G*//HF/6-31G* levels of theory, respectively. The unsymmetrical meso-1-TBCC form is found to be the most stable geometry, among the various conformations of meso-1 configuration. HF/6-31G*//HF/6-31G* and B3LYP/6-31G*//HF/6-31G* results showed that between the two most stable conformations of (±) and meso configurations, (±)-1-TB is more stable than meso-1-TBCC by about 3.35 and 2.43 kcal mol?1, respectively. In addition, MP2/6-31G* and B3LYP/6-311+G** results showed that the (±)-1-TB form is about 1.10 and 2.36 kcal mol?1 more stable than the meso-1-TBCC form. Further, NBO results revealed that in the most stable form of meso configuration (meso-1-TBCC), the sum of the π* allenic antibonding orbital occupancies (Σ π *occupancy) is greater than dl configuration ((±)-1-TB). Also, NBO results indicated that in the (±)-1-TB conformer, the sum of σ and π allenic moieties bonding orbital deviations (Σ σ dev+Σ π dev) from their normal values, is lower than in the meso-1-TBCC form.  相似文献   

7.
The structures and relative stabilities of furoxan and some of its isomers, e.g., the 1,2-dinitrosoethylenes, have been determined by means of ab initio Hartee–Fock and Møller–Plesset calculations. Geometries were optimized at the HF/3-21G, HF/6-31G* and MP2/6-31G* levels, and subsequently used for computing MP2/6-31G*, MP3/6-31G*, and MP4/6-31G* energies. The results are markedly affected by the inclusion of electronic correlation, which renders three of the isomers unstable. It also emphasizes the importance of a zwitterionic contribution to the structure of furoxan, which promotes ring-opening through a cis 1,2-dinitrosoethylene intermediate/transition state that has an MP4/6-31G*//MP2/6-31G* energy that is 31.6 kcal/mol above furoxan.  相似文献   

8.
A new empirical force field method for localized and delocalized carbocations is described. Additional geometry parameters for carbocations were added to Allinger's MMP2 molecular mechanics program, which can treat delocalized π-systems. The effect of hyperconjugation in carbocations is introduced via a quantum chemical term into force field calculations for the first time. The calculated heats of formation are in excellent agreement with a wide range of experimental data; the largest deviations are about 3.5 kcal/mol. The calculated structures agree very well with those computed at correlated ab initio levels (MP2(full)/6-31G*). The relative energies and geometries of different conformations of representative carbocations also were in good agreement with MP4/6-31G*//MP2(full)/6-31G* results. © 1996 by John Wiley & Sons, Inc.  相似文献   

9.
The total Mulliken charges on the carbon atoms of the vinyl group, populations of S-trans-(N1)conformers, and internal rotation energies were calculated ab initio (HF/6-31G**, MP2/6-31G**, and MP2/6-31G**//AM1) for a series of 2R-5-vinyltetrazoles (R = CH3, C2H5, i-C3H7, t-C4H9, C6H5). The calculation results were compared to the available experimental data.  相似文献   

10.
A conformational search was performed for the 12-crown-4 (12c4)-alkali metal cation complexes using two different methods, one of them is the CONFLEX method, whereby eight conformations were predicted. Computations were performed for the eight predicted conformations at the HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6-31+G*, MP2/6-31+G*//B3LYP/6-31+G*, and MP2/6-31+G* levels. The calculated energies predict a C4 conformation for the 12c4-Na+, -K+, -Rb+, and -Cs+ complexes and a C(s) conformation for the 12c4-Li+ complex to be the lowest energy conformations. For most of the conformations considered, the relative energies, with respect to the C4 conformation, at the MP2/6-31+G*//B3LYP/6-31+G* are overestimated, compared to those at the MP2/6-31+G* level, the highest level of theory considerd in this report, by 0.2 kcal/mol. Larger relative energy differences are attributed to larger differences between the B3LYP and MP2 optimized geomtries. Binding enthalpies (BEs) were calculated at the above-mentioned levels for the eight conformations. The agreement between the calculated and experimental BEs is discussed.  相似文献   

11.
The molecular geometries of the 1-chloro-, 1-fluoro-, 1-methyl-, and 1-hydrogenosilatranes were fully optimized by the restricted Hartree-Fock (HF) method supplemented with 3-21G, 3-21G(d), 6-31G(d), and CEP-31G(d) basis sets; by MP2 calculations using 6-31G(d) and CEP-31G(d) basis sets; and by GGA-DFT calculations using 6-31G(d5) basis set with the aim of locating the positions of the local minima on the energy hypersurface. The HF/6-31G(d) calculations predict long (>254 pm) and the MP2/CEP calculations predicted short (∼225 pm) equilibrium Si(SINGLE BOND)N distances. The present GGA-DFT calculations reproduce the available gas phase experimental Si(SINGLE BOND)N distances correctly. The solid phase experimental results predict that the Si(SINGLE BOND)N distance is shorter in 1-chlorosilatrane than in 1-fluorosilatrane. In this respect the HF results show a strong basis set dependence, the MP2/CEP results contradict the experiment, and the GGA-DFT results in electrolytic medium agree with the experiment. The latter calculations predict that 1-chlorosilatrane is more polarizable than 1-fluorosilatrane and also support a general Si(SINGLE BOND)N distance shortening trend for silatranes during the transition from gas phase to polar liquid or solid phase. The calculations predict that the ethoxy links of the silatrane skeleton are flexible. Consequently, it is difficult to measure experimentally the related bond lengths and bond and torsion angles. This is the probable origin of the surprisingly large differences for the experimental structural parameters. On the basis of experimental analogies, ab initio calculations, and density functional theory (DFT) calculations, a gas phase equilibrium (re) geometry is predicted for 1-chlorosilatrane. The semiempirical methods predict a so-called exo minimum (at above 310 pm Si(SINGLE BOND)N distance); however, the ab initio and GGA-DFT calculations suggest that this form is nonexistent. The GGA-DFT geometry optima were characterized by frequency analysis. © 1996 by John Wiley & Sons, Inc.  相似文献   

12.
The wave numbers of trans-2,3-13C2-buta-1,3-diene were calculated using a scaled quantum-chemical force field found at the MP2/6-31G*//MP2/6-31G* level of theory. The obtained results and the theoretical sets of wave numbers for twelve deutero and 13C derivatives of the trans form and five deutero and 13C derivatives of the gauche form of buta-1,3-diene found previously at the MP2/6-31G*//MP2/6-31G* level are compared with the corresponding experimental vibrational spectra corrected for the Fermi resonance. Combined analysis of the vibrational spectra of the above mentioned isotopomers was performed.  相似文献   

13.
Different mechanisms for the alkaline hydrolysis of oxo and aza‐γ‐lactam rings have been studied by ab initio calculations at the MP2/6‐31+G*//MP2/6‐31+G* and B3LYP/6‐31+G*//B3LYP/6‐31+G* levels. The tetrahedral intermediate can undergo two different reactions, the cleavage of the C2−N2 bond (the classical mechanism) and the cleavage of the C2−X6 bond (X=O, N). Both compounds present similar energy barriers for the classical fragmentation, and show considerably lower barriers for the alternative mechanism. Because of this reactivity, the compounds studied are expected to be β‐lactamase inhibitors.  相似文献   

14.
The lowest-energy N4 is computed ab initio to be the planar C2h(3Bu) open-chain structure 13 . The open-chain N4 singlet-state structures dissociate on geometry optimization. The tetraazatetrahedrane Td structure 1 and the tetrazete D2h structure 2 are minima at MP 2/6-31G *. However, both are higher in energy than 13 (24.1 and 21.2 Kcal/mol [UQCISD ) (T )(full)/6-311+G *//MP 2/6-31G * + ZPE (MP 2/6-31G )*, respectively]. The energy of 13 is 157.5 kcal/mol higher than that of two N2(1∑ molecules [UQCISD (T )(Full)/6-311+G *//MP 2/6-31G *] © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Optimized geometries and total energies for the conformers of 3,6-dihydro-1,2-dithiin ( 2 ) and 3,6-dihydro-1,2-dioxin ( 3 ) were calculated at several ab initio MO levels: RHF/3-21G(*), RHF/6-31G*, MP2/6-31G*, and MP2/6-31G*/ /RHF/3-21G(*). For the dioxin, in addition to the above levels the corresponding nonextended basis sets ab initio methods were also carried out. The dithiin results are compared with those of simple disulfanes, HSSH and (CH3)2S2, whose optimized geometries agree closely with the observed structures, which is the gauche (C2 symmetry). For the disulfanes, the gauche geometries from RHF/3-21G(*) are in good agreement with the observed structure while the RHF/3-21G results best fit the dioxin. Pertinent structural data at the RHF/3-21G(*) for the half-chair (C2) dithiin are: bond lengths, ? SS? , ? CS? , ? CC?, and ? C?C? , 2.050, 1.817, 1.515, and 1.317 Å, respectively; bond angles, CSS, ?CCS, and C?CS, 98.0, 114.2, and 127.8°, respectively; CSSC dihedral angle of 63.2°; and twist angle of 36.5°. The total energy for half-chair dithiin at MP2/6-31G*//RHF/3-21G(*) is less than the planar (C2v) and the half-boat (Cs) structures by 69.67 and 29.05 kJ/mol, respectively. The calculated structural data (vs. observed) at RHF/3-21G for the half-chair dioxin are: bond lengths, ? OO? , ? CO? , ? CC?, and C?C, 1.464 (1.463), 1.454, 1.509, and 1.313 Å (1.338 Å), respectively; bond angles, COO, ?CCO, and C?CO, 105.0, 109.8 (110.3), and 120.7° (119.9°), respectively; COOC dihedral angle of 79.7° (80 ± 2°); and twist angle of 39.0 (38.3°). The total energy for half-chair dioxin at MP2/6-31G//RHF/3-21G is less than the planar and the half-boat structures by 70.35 and 42.85 kJ/mol, respectively. The total energies calculated at the extended basis sets (*) ab initio levels for the C2 symmetry dioxin are much lower than those of the nonextended basis sets. © John Wiley & Sons, Inc.  相似文献   

16.
The total Mulliken charges on the C and N atoms, populations of the S-trans-(N1) conformers, and rotation barriers in the molecules of 2-vinyl-5-R-tetrazoles (R = H, CH3, CH = CH2, C6H5, CH2Cl, CF3) were calculated ab initio (HF/6-31G**, MP2/6-31G**). The results were compared with the 1H and 13C NMR data for these compounds.  相似文献   

17.
The tautomeric and conformational equilibrium of 2-nitrosophenol and 9,10-phenanthrenequinonemonooxime was studied by ab initio methods. The geometry optimizations of the structures investigated were done without any geometrical restrictions at HF/6-31G** and MP2/6-31G** levels of theory. The transition structures for tautomeric and rotameric conversions were located. To correct for electron correlation, single-point calculations were carried out up to MP4/6-311G*//MP2/6-31G* level of theory.

Ab initio calculations for 2-nitrosophenol in agreement with the available experimental data define the nitroso form as more stable. It was found that the influence of the correlation energy on the relative stabilities is smaller for the rotamers of the nitroso tautomer but substantially (4–6 kcal/mol) for the oxime forms. It was found that the barrier height of tautomerization reaction is 10.24 kcal/mol.

The structure of the 9,10-phenanthrenequinonemonooxime was studied by solid and liquid state NMR spectroscopy. Ab initio calculations in agreement with our experimental data predict that the compound exists as oxime tautomer and the syn-oxime is most stable. It was found that the solvent influence on the relative stabilities of both isomers: syn- and anti-oxime. While in chloroform solution the syn-oxime is preferred but in DMSO anti-oxime is more stable in energy.

At the MP4/6-311G*//MP2/6-31G**+ZPE level of theory the barrier of tautomerization was predicted to be 10.96 kcal/mol and the rotational barrier around the single C–O bond in the syn-oxime was found to be 7.57 kcal/mol. The rotation is facile and this explains the absence of nitroso tautomers in solution.  相似文献   


18.
Geometry optimizations at the HF/3-21G(*) and HF/6-31G* levels of ab initio theory have been carried out for various isomers of model disubstituted phosphoranes PH3XY(X, Y?OH, CH3, NH2, and SH). Reasonable agreement was obtained between the optimized geometries and available crystal structure data for analogous compounds. The isomers were further characterized by frequency calculations. The MP2/6-31G*//6-31G* + ZPE energy data reveal that the interactions between the ligands are relatively small (0–4 kcal mol?1) for the most stable conformations of the isomers. Hence, for these conformations the apicophilicities (based upon monosubstituted phosphoranes) are approximately additive. The less stable PH3XY conformations are in general transition states or higher-order saddle points, and their interligand interactions are larger in magnitude (up to 10 kcal mol?1); the results with these conformations suggest that apicophilicities may not be as additive for some highly substituted phosphoranes. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Ab initio calculations at HF/6-31+G? level of theory for geometry optimization, and MP2/6-31+G?//HF/6-31+G? and B3LYP/6-31+G?//HF/6-31+G? levels for a single-point total energy calculation, are reported for the chair and twist conformations of 1,2-dithiane (1), 3,3,6,6-tetramethyl-1,2-dithiane (2), 1,2,4,5-tetrathiane (3), and 3,3,6,6-tetramethyl-1,2,4,5-tetrathiane (4). The C2 symmetric chair conformations of 1 and 2 are calculated to be 21.9 and 8.6 kJ mol?1 more stable than the corresponding twist forms. The calculated energy barriers for chair-to-twist processes in 1 and 2 are 56.3 and 72.8 kJ mol?1, respectively. The C2h symmetric chair conformation of 3 is 10.7 kJ mol?1 more stable than the twist form. Interconversion of these forms takes place via a C2 symmetric transition state, which is 67.5 kJ mol?1 less stable than 3-Chair. The D2 symmetric twist-boat conformation of 4 is calculated to be 4.0 kJ mol?1 more stable than the C2h symmetric chair form. The calculated strain energy for twist to chair process is 61.1 kJ mol?1.  相似文献   

20.
Ab initio molecular orbital calculations have been carried out on over 50 model organic molecules and ions to provide the data necessary in the determination of torsional parameters for a force field involving polypeptides. The rotational energy profiles were obtained at the HF/6-31G*//HF/6-31G* level. The results were supported, in many cases, by full geometry optimizations and with consideration of correlation corrections at the MP2 level. With the exception of the dihedral angle being studied, all of the molecules were fully optimized with C1 symmetry. © 1995 by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号